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AFIT/GSE/ENV/14-D-31 

Abstract 

Air Force missions continue to increase in complexity often imposing higher 

levels of task load from cognitive tasks on the operators.  This increased task load 

manifests itself in increased cognitive workload and potentially derogated performance.  

While cognitive workload has been studied for decades, recent advances in objective 

workload models and physiology monitoring have the potential to provide a more robust 

understanding of workload, potentially allowing systems to adaptively employ 

automation to maintain operator peak performance.  The current research sought to 

provide insight into the relationship between subjective workload, task performance, 

objective workload, and select physiology measures.  Analysis of an existing data set was 

performed to determine if individuals exhibiting low performance and high workload 

were more likely to have physiology responses that increased with workload due to a 

stress response than other participants.  This analysis provides an approach to 

investigating the relationships among the four classes of workload information.  

However, the results indicate that certain physiology measures are significantly 

correlated with objective workload, regardless of the performance and workload range of 

the participants.  Unfortunately, relatively low correlations were observed among all 

dependent measures and therefore, further research is necessary to confidently address 

the hypothesis of the current research. 
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EXPLORING INDIVIDUAL DIFFERENCES IN WORKLOAD ASSESSMENT 

 

 

I.  Introduction  

General Issue 

Current military operations have expanded the use of Unmanned Aerial Vehicles 

(UAVs) and Unmanned Aircraft Systems (UASs). A UAV is an aircraft without a pilot 

on board which is capable of being controlled through a remote ground control station 

and is comprised of other elements beyond the physical air vehicle. Currently, UAVs are 

used for targeting and decoy, reconnaissance, combat, combat search and rescue (CSAR), 

research and development, as well as civil and commercial use (Office of the Secretary of 

Defense 2005). High mission demands and greater mission endurance can increase 

manpower requirements, especially since some UAVs can fly for more than 24 hours 

before refueling.  The reliance on these systems, leading to more frequent and longer 

duration missions are a direct result of technological advancements. These advancements 

will require the role of the operator to be adjusted to ensure safe and effective system 

performance with the increased task load (United States Air Force 2013).   

The number and scope of recent Department of Defense (DoD) missions require 

increasing numbers of dedicated pilots to meet the task demands of the missions.  Due to 

manpower constraints, a new approach is required to mitigate these high demands.  From 

2008 to 2010 there was over a 300% growth in Combat Air Patrols (CAPs) for the MQ-1 

Predator and MQ-9 Reaper combined (Coombs 2009). As a result, the U.S. DoD UAV 

Roadmap emphasizes the need for continued advancements in all areas from 
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Autonomous Control Levels (ACL) in UAVs to fully autonomous UAV swarms 

(Clapper, et al. 2009) to address the manpower limitations.  

Autonomy is the capability of a machine to make decisions without human 

intervention.  Currently UASs employ low level flight control functions, such as stability 

control or direction control along a pre-planned route through automation. These 

low-level functions require significant human oversight and planning. Human 

involvement is therefore necessary in pre-planning actions, management of sensors, as 

well as in contingency plan situations (Ng, Hubbard and O'Young 2010). Further, it is 

expected that human interaction will be necessary in these and other critical functions for 

the foreseeable future. 

The need to conduct the increased number missions required by UAVs with a 

constrained number of operators has resulted in a growing need for creating seamless 

interaction between operators and systems employing various levels of automation.  

However, in designing this interaction, one important consideration is operator workload. 

The combination and complexity of tasks, or task load, result in varying levels of 

operator workload (Merlin 2013), where workload is the combination of task demands on 

the operator and the operator’s response to those demands (Keller 2002). The operator’s 

perceived workload effects how they divide their time, attention, and energy across 

specific tasks and can be useful in understanding the differences in performance results, if 

there is a performance gap, and who is affected by the performance gap. According to 

The RPA Vector: Vision and Enabling Concepts 2013-2038, emerging areas of autonomy 

technology which can help manage human workload include: 
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 Sensor Fusion in which information such as diagnostics or prognostics 

across sensors on the vehicle are integrated to maximize information 

attainment and transmission to the operator  

 Communications in which the system coordinates and communicates 

information which is sometimes imperfect and incomplete 

 Motion/Path Planning in which nuanced and dynamic paths are 

automatically generated that meet mission objectives and constraints 

 Trajectory Generation in which the generation of control maneuvers to 

follow a path or visit mission critical locations 

 Task Allocation and Scheduling in which the automatic allocation of tasks 

amongst operators and autonomous agents complying with time, 

equipment, maintenance, repair, and performance constraints 

 Cooperative Tactics in which the sequencing and distribution of tasks 

between operators and other resources to improve success across all 

missions (United States Air Force 2013). 

Autonomy research desires to improve system performance by alleviating 

operators from undesirable circumstances. At times, human performance and behavior is 

mimicked in an attempt to achieve the goal of improving system performance. Recently, 

artificial intelligence has begun to fuse expert systems, neural networks, machine 

learning, natural language processing, and machine vision, with automatic control of 

mobile systems to enhance technological development in autonomy research.  
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Since it is difficult to effectively replace human decision making in these systems, 

there is concern that low-level tasks will be performed by autonomous systems, leaving 

the operator to perform only high level, difficult decision-making.  This could prevent the 

operators from being able to effectively transition or address low-level tasks when needed 

and at times result in them having little to low task load and mental under-load. As the 

operator will be required to rapidly gather and assimilate a significant amount of 

information to perform these tasks effectively, the potential exists to impose a significant 

mental workload on the operator; as operator performance is degraded by excessive 

workload, it is important to insure these systems are designed such that operator 

workload is controlled.  Unfortunately, previous systems have not considered the 

operator during the design of the autonomy system, often resulting in systems that reduce 

operator task load during periods of time where operator workload would have been 

manageable, but increase operator workload during periods of peak operator interaction 

(J. M. Colombi, et al. 2012).   

According to the Air Force Automation Strategy (Overholt and Kearns 2013), this 

improved human-system integration will require the automation system to become more 

aware of and respond to the state of the operator.  This state information might be 

obtained through devices, such as physiology sensors, which determine the level of stress 

an operator experiences and adjust the task load imposed upon the operator.  These 

systems will require an improved understanding of operator mental workload and how it 

affects performance.  As knowledge, skill, and abilities vary among operators, 

influencing their response to a  given task load, including their physiologic response, it is 
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important that these measures consider not only the response of humans, in general, but 

differences between individuals. 

Problem Statement 

Currently, there is not a clear understanding of the relationship of operator 

perceived and objective mental workload which influences human physiologic response. 

Currently many researchers assume the relationship between operator mental workload 

and physiologic response linear, or at least monotonic, as shown in Figure 1. However, it 

is possible that the linear, or monotonically increasing, relationship exists only after the 

workload increases and an operator reaches or approaches their red-line as shown in 

Figure 2.  Operator red-line is the value that coincides with the initial degradation of 

performance due to workload (Reid and Colle 1988). 

 

Figure 1: Frequently Assumed Relationship between workload and physiologic 

response 
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Figure 2: An alternate relationship between workload and physiologic response 

  An improved understanding of this relationship could improve system 

assessment of operator state. State assessment is a necessary element in determining 

methods to automatically or autonomously delegate tasks to an operator, in order to 

modulate task load and the resulting workload to sustain effective operator performance 

in cognitively challenging environments.  

Research Objectives 

This research seeks to provide insight into the relationship between mental 

workload of individuals and their physiological response based upon a spectrum of task 

load.  This research will leverage a combination of variables and measurement techniques 

as listed in Table 1.  

Table 1: Variables and Measurement Techniques Applied in the Current Research 

Variable Measurement Technique 

Subjective Workload NASA-Task Load Index (NASA-TLX) 

Objective Workload Models of Human Performance (VACP) 

Task Performance Response times and Goal attainment 

Human Physiologic 

Response 

Electrocardiography (ECG) and Electrooculography 

(EOG) 
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NASA-TLX is a multi-dimensional rating scale that measures perceived workload 

of the operator based on six independent subscales, including: mental demand, physical 

demand, temporal demand, perceived performance, effort, and frustration (NASA 1986), 

and will be used to understand the operator’s perceived level of workload across a variety 

of tasks.  NASA-TLX scores will be paired with operator performance to differentiate 

operators that are likely experiencing task overload and are therefore more likely to 

experience psychological stress.  

Objective workload values will be generated for several operator tasks using an 

Improved Performance Research Integration Tool (IMPRINT) model.  IMPRINT is a 

dynamic, stochastic, discrete event simulator (Army Research Laboratory 2010).  

IMPRINT models workload by assessing it across the Visual, Auditory, Cognitive, 

Psychomotor, and Speech channels (Bierbaum, Szabo and Aldrich 1989).  This measure 

employs Multiple Resource Theory where workload demands are assessed across 

multiple channels to develop an objective measure of workload specifically accounting 

for demands placed on each channel, and potentially the conflict between these channels 

(Wickens 2002).  The correlation of each of these measures or their combination will be 

assessed with physiological measures including blinks and saccades as determined from 

Electrooculography (EOG) signals, and heart rate (HR) and heart rate variability (HRV) 

as determined from Electrocardiography (ECG).   

Investigative Questions 

The research objective will be addressed by answering several key investigative 

questions.  
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1) Given an existing data set containing appropriate data for a number of individuals, 

which participants’ individual data sets are divergent from one another based 

upon perceived workload ratings (NASA-TLX)-performance relationship?   

2) Which descriptive statistics and patterns are characteristic of red-lined individuals 

based on their objective workload profile as modeled in IMPRINT? Specifically, 

how do these patterns vary for the identified individuals throughout the tasks? 

3) Do the physiological measures blinks, saccades, HR, and HRV, correlate with the 

objective workload profile for all divergent participants and conditions? 

If not, do these measures correlate better for participants that provide high 

perceived workload ratings, poorer task performance and/or higher objective 

workload? 

Note that these questions are designed to address the underlying hypothesis that 

traditional physiologic responses, including heart rate and eye movements, likely 

represent psychological stress rather than perceived workload and therefore are likely to 

indicate changes in perceived workload near operator red-line more so than general 

workload.  

Methodology Overview 

Analysis will be performed on existing data from a human experiment conducted 

by the Air Force Research Labs (AFRL).  The experiment collected performance metrics, 

physiology signals, and subjective or perceived workload through NASA-TLX.  In the 

current research, individuals were grouped into 4 divergent groups based on perceived 

workload ratings and performance data.  A MANOVA was used to determine how the 
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individuals differed statistically.  Models of objective workload were developed in 

IMPRINT based on individual participant’s performance data and task times. The 

objective workload profiles generated by IMPRINT were based on the task design and 

validated by Subject Matter Experts (SME).  An analysis of objective workload profiles 

was performed to identify measures representative of red-line individuals.  The 

physiological measures of the divergent participants were used to determine how the 

performance and workload data related to each other through a correlation analyses. 

Hypothesis 

1) It is hypothesized that there will be four divergent groups with individuals who 

will fit in each based upon their perceived workload ratings from NASA-TLX and 

their performance across all 16 trials. 

2) It is hypothesized that there will be measures from the objective workload 

profiles, as modeled by IMPRINT, which will allow individuals to be identified as 

red-line or not.  

3) It is hypothesized that there will be a weak correlation between the objective 

workload (VACP) and physiological data when the perceived workload 

(NASA-TLX) is low. However, moderate to high correlation will be observed 

between the objective workload (VACP) and physiological data when the 

perceived workload (NASA-TLX) is high.  Similar relationships might also exist 

for users having generally high or degraded performance. 
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Assumptions and Limitations 

An existing data set is being used and additional data will not be collected at this 

time.  Each participant in the existing human-participants experiment experienced 16 

different scenarios in a unique order, completing these scenarios on each of the four 

different days.  It was assumed that the training provided to the participants prior to the 

study overcame any learning effects and that the randomized order of the conditions 

resulted in no order effects and did not affect the workload or physiological changes in 

this investigation.  It is assumed the data represents the general population and the 

workload experienced by the participants is comparable to the workload experienced by 

current UAV operators. Further, it is assumed that there is enough variability between the 

skills and abilities of the participants to represent the variability in the existing 

population. 

Implications 

This research is expected to broaden the understanding of the relationship 

between perceived workload (NASA-TLX), objective workload profiles as modeled in 

IMPRINT (VACP), and physiological measures associated with differing levels of 

mental workload.  It seeks to provide insight into how mental workload effects 

physiological changes and how task performance, cognitive performance, workload 

stress, and physiological measures relate.  It will also help develop a cognitive workload 

profile model for use in automation that can eventually predict or estimate and manage an 

operators workload in real-time. 
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Organization of Thesis 

This thesis is in a traditional format. Chapter 2 provides a template of pertinent 

terminology and past research which will be referenced throughout the thesis.  It provides 

an overview of the main research topics to include workload, workload measures, 

modeling techniques, relationships between workload and performance, and 

physiological measures. Chapter 3 provides a synopsis of how the experiment was 

conducted and that data used for the analysis.  Chapter 4 explains the analysis procedures 

and results.  Finally, Chapter 5 discusses the research objectives and lays a foundation for 

future research. 
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II. Literature Review 

Chapter Overview 

Relevant background information is provided on task load, workload, 

performance, and physiological measures are provided in this chapter to motivate and 

support the methods applied in this research.  Additionally, individual differences in 

relationship to workload, performance, and physiological measures are discussed. 

Additionally, challenges in real-time human-performance measures are summarized.  

Task load, Workload, and Performance 

It is imperative to understand the similarities and differences between task load, 

perceived workload, objective workload estimates, system performance, and human 

performance. Task load, also referred to as task demand, refers to the frequency, 

consistency, and difficulty of activities an operator or user performs to complete a task or 

mission (Soliday 1965).  Task load considers the amount of time allocated to complete 

the specific task, the level of cognitive information processing required, and the 

constraints of the individual actions a user must complete (Hardman, et al. 2008).  Task 

load refers to the work or task demands placed on the user.  It does not change based on 

the user’s abilities or the perception of the work or tasks.  

Workload is then experienced by a user in response to these task demands. It 

varies based upon the operator’s ability to perform the individual actions. Workload is a 

conceptual way to express the perceived task demands which have been placed on the 

user (Beevis, et al. 1999). .  Workload can further be divided into physical and cognitive 
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workload.  Although most tasks have both a physical and cognitive component, the 

current research is concerned primarily with mental or cognitive workload.  Mental 

workload is the perceived mental effort required by a user to respond to a specific task 

load (Keller 2002).  Besides the task load, mental workload is influenced by how a 

person divides their time, attention, and energy when performing specific tasks and is 

influenced by their capacity.  According to Neerincx (2003) there are three levels of 

cognitive information processing: automatic processes or skills, routine problem solving 

or rules, and more complex analysis of information.  The overall mental workload 

imposed by a task or the task load experienced by the user depends a great deal on the 

level of information processing required by a specific operator. Highly experienced 

operators may perform a task using an automatic process while a less experienced 

operator must perform complex analysis of information to complete the same task. Thus, 

the mental workload imposed by a given task load can vary significantly between 

individuals.   

Task load and workload affect a user’s overall performance.  The relationship 

between mental workload and performance is complex but is often times described by the 

Hebb/Yerkes-Dodson Law (Teigen 1994). The standard explanation of the 

Hebb/Yerkes-Dodson Law represents the relationship of arousal and performance in 

simple and complex tasks suggesting that moderate levels of arousal will improve 

performance by allowing concentration on relevant cues, whereas higher levels may be 

detrimental because relevant cues may no longer be available to the individual (Teigen 

1994, Hebb 1955). It has been noted that the optimum workload level is higher in simple 
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tasks than in complex tasks which can be seen in the figure below. This is shown in 

Figure 3 as an adaptation of the Hebb/Yerkes-Dodson law with a simple and difficult 

task. Hebb introduced the inverted U to describe this relationship and future researchers 

extrapolated his work and the relationship can be found in recent work explaining stress 

(Teigen 1994, Hebb 1955). Performance increases up to a certain level of arousal and 

then begins to degrade as an individual reaches their maximum level.  A similar 

relationship has been applied to describe the relationship between mental workload and 

performance.  When applied to workload, the level of workload resulting in maximum 

performance can be describes as an individual’s red-line.  An individual’s red-line is the 

point in which they can no longer sustain the level of performance at the current task load 

and often times visibly manifest itself in a stress response based on the workload they are 

experiencing.  

 

Figure 3: Depiction of the Hebb/Yerkes-Dodson Hybrid Adaptation (adapted from 

(Teigen 1994)) 
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It is at this red-line point where an individual would have to shed a task or tasks to 

continue performing (Grier, et al. 2008). Another way to look at workload and where 

red-line occurs was described by DeWaard (1996) in a reference to Meister’s work where 

there are three regions describing the relationship between task demand and task 

performance. The three regions are: A; where increase in demands do not cause a 

performance decrement, B; in which task demands increase workload, which causes 

performance decrements, and C; when extreme levels of task load result in high levels of 

mental workload, resulting in reduced performance.  Performance then declines with 

further increases in mental workload to a minimum level where it remains with increased 

task demands (Meister 1976). Subjective measures of workload may be sensitive to 

overload or redlining in the B-region and clearly reveal overload in the C-region, but 

overall are not sensitive to increases in workload in the A-region were performance 

remains stable.  Cassenti and Kelley hypothesized a workload curve with four regions in 

which qualitative descriptions of the performance function in increasing order with 

increases in workload include, undertaxed, ceiling performance, steady decline in 

performance, and floor performance (Cassenti and Kelley 2006). This model is similar to 

Meister’s, however it accounts for the under-load condition. Using this model, the 

red-line occurs near the transition from region B to C as depicted in Figure 4. 
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Figure 4: Operator Workload & Red-line (Adapted from (Cassenti and Kelley 

2006)) 

 Understanding where the red-line of workload occurs helps system designers 

proactively decide what level of task load is acceptable.  It can also help to model 

workload in multi-task performance models which use workload management strategies 

(Grier, et al. 2008). In the past, workload red-line values have been arbitrarily drawn 

(e.g., SWAT used a rating of 40 (Reid and Colle 1988) and IMPRINT used a rating of 60 

(Mitchell, et al. 2003)), however these values are not empirically supported (Grier, et al. 

2008). Understanding where or when an individual reaches red-line, also provides helpful 

information when designing systems to ensure optimum performance is obtainable for 

extended periods of time. 

Human performance as used in the experiment applied in this thesis is concerned 

with the error rate and throughput due to time and accuracy tradeoffs. High performance 

represents a low error rate, quick response times, and high productivity, which can be 

associated with high survivability and operator safety in the military context.  This is 
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expressed in the form of a score for both the primary and secondary task in the dataset to 

be applied in this thesis. If the task load and workload are too high, a user’s overall 

performance will be low. Productivity or accuracy may be sacrificed when operators are 

required to attend to more than one task. Understanding the relationship between 

workload and performance will help facilitate future developments and improvements in 

human performance. Studying workload helps one to answer human performance 

questions and gain a better understanding of operator states (Durkee, et al. 2013).  Of 

importance to the current thesis is the notion that as mental workload increases 

monotonically, performance does not.  Therefore, one would expect individuals 

experiencing moderate levels of workload to perform better than individuals experiencing 

extreme levels of workload. 

Subjective Workload Measures 

Subjective measures have been used to create psychological scales since Stevens’ 

power law was proposed. Stevens’ power law used observers’ responses to psychological 

attributes and developed an interval scale by assigning numbers which corresponded with 

their responses (Stevens 1961). Subjective measures are influenced by an individual’s 

personal judgment.  Typically subjective measures use a scaling system to record an 

individual’s judgment about a situation, task, or experience after the fact. Subjective 

workload measures are used to estimate the perceived mental workload an individual 

experiences based on the specific task load.  There are numerous subjective workload 

measures which have gained acceptance in human performance and workload research to 

include the Subjective Workload Assessment Technique (SWAT) and NASA-Task Load 
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Index (NASA-TLX) (Reid and Colle 1988, Wynn and Richardson 2008, Hart and 

Staveland 1988).   

SWAT captures the multidimensional aspects of mental workload.  It uses a scale 

development phase and an event scoring phase (Reid and Colle 1988). Participants 

respond using a three point scale to the following questions:  

1) How much spare time do you have? 

2) What is your stress level? 

3) What is your mental effort? (Hancock and Scallen 1997) 

SWAT allows relatively real-time assessment of perceived mental workload due to the 

short nature of the measure. SWAT also causes little disturbance to the primary task, 

which is an important attribute of an effective subjective workload measure.  

NASA-TLX is an empirical workload assessment tool which collects subjective 

or perceived workload data.  It was developed by the Human Performance Group at 

NASA’s Ames Research Center and initially tested in over 40 laboratory simulations 

(NASA 1986). The highly sensitive nature and acceptance of the NASA-TLX combined 

with the low intrusiveness and implementation requirements make it an attractive 

subjective workload measure (Hart and Staveland 1988). A disadvantage of the 

NASA-TLX resides in the low timeliness of the measure.  That is, individuals complete 

the NASA-TLX as a reflection of the task, rather than in the moment. This separation in 

time between experience and reporting can cause a disconnect where a user may not 

recall their workload accurately. However, it has been shown that the bias shown in 

subjective ratings can actually provide insight into significant cognitive processes  (Hart 
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and Staveland 1988). Also, NASA-TLX may not be sensitive to specific aspects of the 

task environment. Additionally, how or why an individual approached the task a certain 

way may not be readily accessible to their conscious evaluation. If their performance was 

poor, they may suppress their mechanisms, approach, or perceived difficulty as a result. 

If the measure is not properly explained or individuals choose not to read the descriptions 

prior to rating, they may confuse what each subscale actually means. NASA-TLX does 

not use standard word anchoring, thus allowing participants to determine their own and 

often differing anchors. 

 Each subscale is scored in five point increments on a 100 point scale. Descriptions 

of the six subscales are typically given in the form of questions and are shown below:   

Mental Demand: How much mental and perceptual activity was required? Was the 

task easy or demanding, simple or complex?  

Physical Demand: How much physical activity was required? Was the task easy or 

demanding, slack or strenuous? 

Temporal Demand: How much time pressure did you feel due to the pace at which 

the tasks or task elements occurred? Was the pace slow or rapid? 

Overall Performance: How successful were you in performing the task? How 

satisfied were you with your performance? 

Frustration Level: How irritated, stressed, and annoyed versus content, relaxed, and 

complacent did you feel during the task? 

Effort: How hard did you have to work (mentally and physically) to accomplish your 

level of performance? (Hart and Staveland 1988) 
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Phrasing the descriptions in this manner has been found to help individuals 

complete the workload measure more accurately (Schuff, Corral and Turetken 2011). 

NASA-TLX scores have been shown to increase as the task difficulty in an experiment 

increases (Wynn and Richardson 2008). The current research provided descriptive 

questions when participants completed the NASA-TLX. This approach provides a more 

in-depth understanding of how the participants’ perceived their workload during each 

aspect of the task. NASA-TLX are commonly reported as raw scores, a single score 

reported as an average across all of the subscales or as a single score as a weighted 

combination of the raw scores. The weighted score uses participant pairwise comparisons 

of which subscale was more relevant to workload, with the resulting number of times 

each subscale was chosen being the weighted score (Hart and Staveland 1988). The 

overall task load index is calculated taking the weighted score multiplied by the score of 

each subscale divided by 15, resulting in a value from 0-100, which results in a 

composite score tailored to the individual’s workload definition (Hart 2006).   Originally, 

the weighting scale was thought to increase sensitivity for relevant variables based on the 

experiment and decrease between-rater variability (Hart 2006). Many researchers have 

eliminated the weighting process by averaging the workload scores to create estimates of 

overall workload to simplify the process (Hart 2006). A meta-analysis of 29 different 

studies showed mixed results as to the preferred method (Hart 2006).  

Objective Workload Models  

Measuring mental workload through subjective means permits a researcher to 

gain insight to the mental state of a human operator and the influence of task load on 
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performance.  However, obtaining subjective workload values during system design is 

not always possible.  To obtain subjective ratings of the workload imposed by a system 

on an operator, the operator must use the system and then provide a rating. However, 

since the system or even realistic emulations of the operator workstation are frequently 

not available during the early stages of system design, it is often not possible to permit an 

operator to experience the systems to gain the experience necessary to form subjective 

ratings of their mental workload.  Therefore, objective workload models have been 

constructed to assess operator workload.  Such models help system designers understand 

the impact of a system design on operator workload early in the design process.  The 

models may also help the designer avoid undesirable system implementations.  For 

example, early RPA interfaces often exposed the operators to long periods of low 

workload mixed with short periods of extremely high workload (Merlin 2013), resulting 

in less than an ideal work environment.  Objective workload models should ideally 

permit one to estimate human workload during the early stages of system design and 

adjust the system design to avoid similar undesirable work conditions. Objective 

workload models are derived from and explained through the application of workload 

theories. 

Workload Theories 

The unitary-resource model proposed by Kahneman (1973), suggests a limited 

amount of attention can be applied to different types of mental processes. The tasks can 

be executed simultaneously if they fall within the capacity of the resource, but once they 

exceed the capacity, performance will decrease. Results supported the hypothesis that a 
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primary task would be attended to before a secondary task (Posner and Boies 1971). An 

assumption of this model is that the attentional resources which are applied to the 

different tasks are the same regardless of when or how the tasks are performed (Proctor 

and Van Zandt 2011). 

Wickens’ proposed the Multiple Resource Theory (MRT) suggesting that humans 

have multiple pools of resources which can individually be tapped (Sarno and Wickens 

1995).  MRT is concerned with three components: demand, resource overlap, and 

allocation policy (Wickens 2008). If a pair of tasks requires the same pool of resources, 

the tasks must be handled sequentially.  If the pair of tasks requires different resources, 

then the two tasks could be performed in parallel, although perfect time sharing is not 

guaranteed (Wickens 2008).  Further, some tasks may require multiple resources, creating 

bottlenecks that limit parallel processing. 

According to MRT, a decrement in performance occurs when there is a shortage 

of some resources.  It suggests humans have a limited cognitive resources, restricting 

their ability to process information.  Excess workload from a task demand can result in 

less efficient and less accurate performance from an individual (Wickens 2008). 

Wickens’ theory suggests that tasks can be performed concurrently. The tasks may 

interfere with each other and as the difficulty increases in one task, the performance will 

decrease in another task. However, further research showed that the workload and 

performance relationship is more complex. Nachreiner demonstrated that both high and 

low workload can negatively affect performance (Nachreiner 1995). Additionally, 
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increased workload can result in improved performance based on the participant’s 

strategy for mitigating the task demands.   

The Time-Line Analysis and Prediction (TLAP) workload model by Parks and 

Boucek is based on the assumption that task performance will break down if the time 

required to perform the tasks were greater than 80% of the time available (Parks and 

Boucek Jr. 1989). The TLAP workload model proposes the presence of five separate 

channels: vision, audition (both hearing and speech), hands, feet, and cognition (Parks 

and Boucek Jr. 1989).  TLAP only accounts for the amount of time the task takes to 

complete and does not consider the complexity of the task and the demand the specific 

task places on the cognitive processing channel or channel conflicts (Sarno and Wickens 

1995). It assumes the task fully demands a specific channel or it does not. 

The Workload Index (W/INDEX) uses the MRT framework (North and Riley 

1989) to capture channel conflicts using a conflict matrix which ranges from 0.0 to 1.0 

(North and Riley 1989).  It produces relative measures of interference between resources 

and assumes the task interference is directly proportional to predicted workload (Sarno 

and Wickens 1995).  The Interference Matrix can be derived for other sources such as the 

Visual, Auditory, Cognitive, and Psychomotor (VACP) theory described below.  It is 

important to note the W/INDEX model does not discriminate channel conflict within a 

task from channel conflict between specific tasks (Sarno and Wickens 1995).  W/INDEX 

does however, assume workload channels overlap which generate the interference.  

Similar to MRT in some aspects, the VACP model developed by Bierbaum, 

Szabo, and Aldrich (Bierbaum, Szabo and Aldrich 1989), which was an adaption of the 
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McCracken and Aldrich VACP model, can be used to predict workload (McCracken and 

Aldrich 1984). This theory builds on Multiple Resource Theory where workload demands 

are assessed across the following channels: Visual, Auditory, Cognitive, Speech, Tactile, 

Fine Motor, and Gross Motor to develop projective measure of workload (Wickens 

2002).  The VACP scales were created by subject matter experts (SMEs) who rated 

subtasks of flight-related activities (Wickens 2002). VACP specifically looks at excess 

demands placed on one channel (Wickens 2002). All task demands are decomposed into 

subtasks that must be performed by one of the seven channels.  VACP suggests all visual 

and auditory components are external stimuli to which the individual attends.  The 

cognitive channel refers to the information processing required by the task, and the 

psychomotor channel describes the physical actions required by the task (Keller 2002).  

The VACP scale produces a rating to explain the degree to which each resource 

component is used in the particular task over time.  

Excess VACP demands can result in cognitive overload which inhibits 

performance.  The operator may not be aware of the degraded performance due to task 

saturation (Ng, Hubbard and O'Young 2010). It has been shown that mental under-load, 

in the workload context, can be detrimental to overall performance and successful task 

completion (Young and Stanton 2002). Mental under-load typically occurs when the 

operator monitors a system for prolonged periods such as during vigilance or sustained 

attention tasks waiting for a signal to appear which can result in slower response speed 

and accuracy (Hancock and Chignell 1988).   
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Malleable Attentional Resource Theory (MART) suggests that mental under-load 

affects not only performance, but the mental resources (e.g., channel bandwidth) 

available at any moment in time.  MART suggests an operator’s resource pool will shrink 

with a lower task load (Young and Stanton 2002), suggestive of a process similar to a 

sleep mode for a digital processor.  Once the resource pool has shrunk, the operator may 

experience a degradation of attention and performance when a critical situation arises 

(Young and Stanton 2002) until such time as additional mental resources can be 

activated.  Young & Stanton (2002) claim, excessive reductions in workload actually 

shrink attentional resource pool capacity, which is separate from disparities in arousal or 

effort.  

Neerincx developed the Cognitive Task Load (CTL) model to better understand 

the relationship between task performance and mental effort (Grootjen, Neerincx and van 

Weert 2006). The three load factors of interest were percentage of time occupied, level of 

information processing, and task-set switching (Grootjen, Neerincx and van Weert 2006). 

Overall, over and under-load situations result in more errors, slower performance, 

load-sharing, and load-shedding (M. A. Neerincx 2007). These types of behavior are 

known as self-adaptive strategies. Load-sharing and load-shedding strategies are thought 

to be the most commonly applied (Schulte and Donath 2011). Load-sharing involves 

changing of the way a task is accomplished (Schulte and Donath 2011). Load-shedding 

strategy is characterized by task prioritization, dismissal of subtasks, changes in task 

success rates, and or attention allocation variation (Veltman and Jansen 2005). 

Self-adaptive strategies are used to maintain the desired level of performance for as long 
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as possible with increased task load. Individuals adopt self-adaptive strategies due to 

workload debt, workload debt cascade, and workload overload.  Workload debt occurs 

when an individual is unable to complete all relevant tasks in the allotted time because 

their cognitive workload is too high (Smith 2009).  As a result the individual will 

strategize consciously or subconsciously and embark on load shedding, postponing a task 

to permit another decision action to be completed in a required timeframe (Smith 2009). 

An escalation of workload debt, or workload debt cascade, occurs when postponed tasks 

stack, such that the individual is unable to catch up with the required tasks, resulting in 

task failures (Smith 2009). Workload overload occurs when individuals stop trying to 

complete the tasks, typically as a result of workload debt cascade. All of these contribute 

to the way an individual adapts as they approach and surpass red-line. 

Human Performance Modeling and IMPRINT  

Modeling and simulation are useful when trying to understand the capabilities of 

new system designs and human interaction with the system. One way of modeling human 

performance is through the use of reductionist models which decompose the human or 

system task structure into lower level tasks which can each be analyzed to reasonably 

estimate human performance (Laughery 1998). First Principles or cognitive models 

provide another way of modeling human performance and uses an organizational 

framework based on theories of mechanisms which facilitate human behavior such as 

perception, central processing, and working memory (Laughery 1998).  First Principles of 

human behavior combined with Task Network Models enables the modeling of cognitive 

workload, human response, and performance of complex systems (Laughery 1998).  
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Task Network models can interact with models of system hardware and system 

software to fully represent the human/machine system which allows for the prediction of 

system dynamics and helps answer human centered design questions (Laughery 1999, 

December).  Discrete Event Simulation (DES) models, a class of models, can be used to 

analyze the cognitive demands of operators during specific tasks and provide an output 

highlighting their workload at discrete time intervals throughout the scenario.  Improved 

Performance Research Integration Tool (IMRPINT) is an example of this type of tool 

which provides an objective measure of operator cognitive workload in the form of 

workload profiles (Army Research Laboratory 2010).  

In IMPRINT, networks are constructed using task level information which 

represent the flow and performance of higher level tasks or missions.  This is 

accomplished by first completing a task analysis. A task analysis outlines the sequence of 

tasks performed, timing of the tasks, workload associated with each task, and the 

background scenario details (Army Research Laboratory 2010).  Typical task level inputs 

are: mission-function-task breakdown, task time and accuracy, failure consequence, 

system-subsystem-component breakdown, mean operational units between failure 

(MOUBF), and level of environmental stressors such as heat, cold, noise, etc. (Army 

Research Laboratory 2010). 

During a task analysis, a workload value from 1-7 is given to each task for each 

VACP channel and entered into the model. A task cannot score higher than a 7 for a 

specific channel. The model takes the workload ratings for each resource of VACP and 

sums within and across channels for concurrent tasks creating workload profiles. The 
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result is a model representing the objective workload of a task.  Workload models can 

predict if the operator:  

1) Has the capability to perform the required tasks 

2) Has enough spare capacity to take on additional tasks 

3) Has enough spare capacity to handle emergency situations (Eisen and Hendy 

1987) 

In addition to simply adding VACP demand values for the tasks, IMPRINT can 

additionally determine conflict values between the tasks and/or different channels, 

increasing workload under conditions where multiple tasks impose requirements on 

competing mental resources in overlapping time frames. 

In IMPRINT, these workload profiles can be generated to examine the 

crew-workload distribution and soldier-system task allocation (Army Research 

Laboratory 2010). The workload profile enables system designers to effectively 1) 

monitor increases in workload and 2) determine when these workload increases warrant 

system design changes to maintain desired levels of workload. The resulting outputs 

include workload graphs and levels, task performance timeline, and diagnostic reports of 

subfunction and task failures (Army Research Laboratory 2010). Additionally, the 

models are used to understand if the task or equipment can be altered to change the 

amount of spare capacity of the user or the amount of mental workload (Eisen and Hendy 

1987).  
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Physiological Measures and Workload 

Another way to measure workload is through physiology measures. Physiology 

measures provide an objective measure of biological responses under specific conditions.  

These measures employ sensing equipment designed to measure physical phenomena 

related to the biological processes within the human operator with transducers.  The 

transducers output the information in the form of an electric signal which can later be 

analyzed to provide insight into physiological changes.  Physiological measures allow 

continuous objective assessments of physical phenomena which are believed to be 

correlated with functions, such as stress and mental workload.  However, changes in 

physiology are influenced by stimuli through complex relationships, often making it 

difficult to link specific physiological responses to cognitive or physical states. Previous 

research has documented the relationship of behavioral performance and nervous system 

activity, specifically changes in the autonomous nervous system (Durantin, et al. 2014).  

Shifts from low to high cognitive workload are often correlated with increases in pupil 

size and Heart Rate (HR) (Durantin, et al. 2014), as well as decreases in heart rate 

variability (HRV) (Brookhuis and Waard 2010).  These changes, however, are not 

uniquely coupled to workload as changes in pupil size also occur with changes in 

illumination or arousal (Fishel, Muth and Hoover 2007), and changes in heart rate and 

heart rate variability can occur with physical exertion (Achten and Jeukendrup 2003).  

Typical physiological measures associated with workload are:  electrooculography 

(EOG), electromyography (EMG), pupil diameter, electrocardiography (ECG), 

respiration, electroencephalography (EEG), and skin conductance (Popovic, et al. 2013). 
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Physiology measures can be obtained in the same manner for each participant. 

However, these measures often vary significantly between individuals.  To overcome this 

between-participant variability, it is common to calculate differences between an operator 

state during an experimental condition and a known baseline, often associated with the 

resting state of the user. The use of this difference-from-baseline measure ensures an 

individual with a fast or slow heart rate or unique physiological measure will not add 

unnecessary bias to the data. Individual baseline measures are typically taken at the 

beginning of each experimental session to calibrate the measures to the specific 

participant.  However, it is also known that such baseline measures do not always 

represent a relaxed, resting state as participants can be anxious prior to an experiment, 

especially after the unique experience of having several physiology sensors attached to 

their body (Splawn 2013). Another approach to measuring the difference is to use a 

“vanilla” baseline condition which uses a minimally demanding task and seeks to 

overcome the traditional baseline requirement of having an extended period of inactivity, 

free from exercise, metabolic activation of food or altering substances for 12 hours, or 

emotional excitement (Jennings, et al. 1992). 

An electrocardiogram (ECG) is used to measure heart rate (HR) and heart rate 

variability (HRV). HR is the number of beats within a fixed amount of time, typically 

measured in beats per minute.  HRV takes into account the patterns and frequency 

content of inter-beat intervals (IBI) (Brookhuis and Waard 2010). The electrical activity 

of the heart is collected using the ECG which produces data on the variation of time 

duration between heartbeats.  This allows researchers to monitor the HR and HRV.  It has 
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been shown that operators who experience an increase in mental effort will exhibit an 

increase in HR and a decrease in HRV when compared to baseline measures (Brookhuis 

and Waard 2010). This change in HR and HRV is reflective of a defense reaction 

typically found in effortful cognitive tasks (Brookhuis and Waard 2010). Research has 

also shown HR may be sensitive to unpredictable task load changes (Hancock, 

Jagacinski, et al. 2013). However, HR and HRV do not provide a way for differentiating 

between resources to identify the cause of the overload due to task load changes. 

One measure of  HRV is the ratio of low frequency (LF) variability of HR (0.04 

to 0.15 Hz), usually associated with blood pressure control to the high frequency 

variability (HF) (0.15 to 0.40 Hz) which typically correspond to respiratory sinus 

arrhythmia (RSA) (Durantin, et al. 2014).  The RSA is the oscillation of the RR, or 

interval between successive Rs in the tachogram output. An R expresses itself as a peak 

in the QRS complex. The LF/HF ratio of HRV has been shown to provide a reliable 

measure of cognitive workload (Durantin, et al. 2014). Another measure of HRV is 

through the analysis of ECG data in the time-domain.  The R wave and peak are 

identified using QRS detection algorithms identifying the RR intervals (Bolanos, Nazeran 

and Haltiwanger 2006) as shown in the ECG example in Figure 5: ECG SignalFigure 5.  

Interpolation and re-sampling are performed to produce a uniform tachogram. Problems 

with the tachogram data are identified and corrected, and a smoothing function is run.  

HRV has been shown to have an inverse correlation with workload (DeWaard 1996). 
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Figure 5: ECG Signal 

Eye movements, blinks, saccades, and pupil dilation all provide insight into how 

users interact with complex visual displays and the underlying cognitive processes 

(Marshall 2002). Gaze tracking measures the angle of the gaze of the participant to 

determine eye and head position to project a point on a surface corresponding to the 

location of the user’s fovea.  Specifically, the eye-gaze is computed using points in the 

model of the face and points in the camera image (Kim and Ramakrishna 1999). It uses 

video cameras which are typically mounted to the desk or table. Gaze tracking requires 

calibration of the individual participant with the apparatus, but is noninvasive after initial 

set-up. This calibration takes into account the eye glint, pupil location, and automatically 

detected facial features for reference such as inner and outer eye corners, mouth corners, 

and tip of nose.  Potential issues with gaze tracking arise when individuals have dark 

colored irises or small pupils, require corrective glasses (Kim and Ramakrishna 1999), or 

rotate their head to remove their face from the view of the camera. This causes the 

software to not be able to accurately track the gaze continuously.   
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Video-based eye trackers can also capture and record pupil diameter.  The Index 

of Cognitive Activity (ICA) measures abrupt discontinuities in pupil diameter signals 

which have been shown to vary as a function of objective workload (Marshall 2002).  

ICA does not require the averaging of trials; it can be applied to all signal lengths, and is 

nearly real-time (Marshall 2002). ICA was used to compare a task with no cognitive 

effort to one with cognitive effort that used an arithmetic item in light and dark scenarios. 

High levels of ICA were recorded during the effort task and low levels during the no 

effort task across two different, controlled lighting conditions (Marshall 2002). These 

results suggest the ICA measures pupil changes based on radial muscles qualifying 

mental effort and simultaneously factors out circular muscles contractions resulting from 

changes in environmental lighting (Marshall 2002).  Absolute pupil diameter is known to 

increase with increases in mental effort, but is also influenced by illumination level 

(Marshall 2002). Pupil diameter provides a reliable measure of workload; however, 

differentiating between resources to identify the cause of the overload cannot be 

accomplished by using only pupillometry measures (Proctor and Van Zandt 2011). 

Eye movements can also be measured through the use of Electrooculography 

EOG, which uses electrodes placed around the eye to detect eye movements by 

measuring the cornea-retinal standing potential between the front and back of the eye 

(Krupinski and Mazurek 2011). It can be effective for identifying blinks, blink duration, 

and saccades. Blinks are recorded based on short pulse shapes with magnitudes 

comparable to the entire range (Krupinski and Mazurek 2011). Saccades look at the rapid 

value changes separated by nearly constant values.  Saccades occur when individuals 
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scan scenes; it is the quick movement when they move from one interesting aspect to 

another. The nearly constant values are the fixations and typically occur between 

saccades. While similar data can be obtained from video-based eye trackers, EOG data is 

not influenced by the appearance of the eye or the video camera’s ability to record an 

image of the user’s face. 

 O’Donnell & Eggemeier (1986) reported that fixation times increased with 

increased workload. Similarly, May et al. (1990) showed an increase in mental workload 

resulted in a smaller saccadic range. Three components of eye blinks: eye blink rate, 

blink duration, and eye blink latency, have been used to measure workload (DeWaard 

1996). Some studies have shown that blink latency increases and closure durations 

decrease when task demands increase (Kramer 1990). This also suggests there will be 

longer fixation times with increased workload. 

Individual Differences  

Complex systems especially ones using automation, will require an improved 

understanding of task load, experienced workload, and how it affects performance. The 

relationship of workload and physiological measures may be representative of the entire 

spectrum of workload or just those individuals who are considered red-line as previously 

depicted in Figure 1and Figure 2. As operator skill and their physiologic response to a 

given task load varies between individuals, it is important that these measures consider 

not only the response of humans, in general, but the differences between the individuals.  

Most workload research groups individuals together and looks at differences that 

arise in individuals as noise rather than individual differences (Wickens, Hollands, et al. 
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2013). Other individual difference research explored the personality domain. Szalma 

(2009) explored personality and individual differences in the context of optimists and 

pessimists and suggested they differed in their coping styles and in how many resources 

they had available to allocate to tasks. Guastello, et al. (2013) reported that individual 

differences affected all NASA-TLX scales except physical in either anxiety or emotional 

intelligence suggesting that anxiety results in higher arousal levels and higher emotional 

intelligence scores may have helped them cope and lower their arousal levels. Little work 

exploring the red-line aspect of workload and individual differences red-line have been 

conducted (Damos 1988).  

Cegarra and Hoc (2006) reported there are task committed and resource 

committed individuals. Increased complexity resulted in in more functional 

representations to reduce cognitive workload for resource-committed individuals whereas 

the task-committed individuals accepted the increased workload when testing experts 

(Cegarra and Hoc 2006).  Bloem and Damos (1985) looked at the performance of 

secondary-tasks to understand the workload based on the single resource capacity model. 

They found slight evidence suggesting that individuals who exhibit better secondary-task 

performance also experienced less frustration and were more satisfied with their 

performance which is indicative of them experiencing less workload (Blowem and 

Damos 1985). Recently, models with multiple physiological input variables have been 

shown to account for the majority of workload variance for specific individuals (Durkee, 

et al. 2013). However, there is the potential for there to be individual differences that 

have not been sufficiently measured (Durkee, et al. 2013). Understanding these individual 
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differences will continue to provide pertinent information allowing models to account for 

more workload variance. 

Summary 

 Understanding the type of information subjective workload, objective workload, 

and physiological measures add to the overall body of research within the workload and 

performance paradigm is essential to improving complex systems. Subjective measures 

can be used to understand the individuals who perceive themselves to be on the extremes 

of the workload spectrum. Objective measures can help predict when a participant is 

red-line and which tasks are causing the red-line. Objective measures can also identify 

which resource channel(s) are overloaded. These measures combined with physiological 

measures can help improve researcher's understanding of how or when individuals reach 

their red-lines as well as provide insight into when the shift from acceptable workload to 

red-line occurs.   
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III. Methodology 

Chapter Overview 

To address the research questions, the current research utilized an existing data set 

from a human-subjects experiment conducted within the 711
th

 Human Performance Wing 

of the Air Force Research Laboratory.   To enable the reader to understand this data set, 

the participants, experimental design, apparatus, and experimental procedure from this 

study is reviewed in this chapter.  This chapter further summarizes the workload 

assessment models that were created and the data analysis methods that were employed.  

Participants  

A total of 12 participants (8 males, 4 females) ranging from 18-46 years of age 

(M=25.66) completed the study.  Two additional participants began the study, but one 

withdrew and another failed to follow the experimental directions. Each participant was 

randomly assigned to a separate experimental condition in which they experienced the 

experimental scenarios in different orders.  Recruitment was completed in a gender 

neutral manner.  Participants were recruited locally (Midwest Region) from among Air 

Force Institute of Technology (AFIT) students, Wright State University (WSU) students, 

University of Dayton students, Wright Site Junior Force Council members, and Air Force 

Research Laboratory personnel.  All participants were able to communicate in written 

and spoken English.  No previous experience with RPAs was required.  Participants were 

excluded if they were not fluent in English, or if they had specific motor, perceptual, or 

cognitive conditions which prevented them from operating a computer, reading small 
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characters on a computer monitor, or hearing and comprehending verbal commands 

through computer speakers.  All participants were right handed and self reported to have 

normal or corrected-to-normal eyesight with no color blindness. All included participants 

reviewed and signed an informed consent form in accordance with human research ethics 

guidelines and participated in 4 experiment sessions beyond the initial training.  

Participants were paid $15 per hour for their participation.  Each session averaged an 

estimated 3 hours and did not exceed 4 hours.  

Experimental Design and Apparatus 

 This research was conducted at the Human Universal Measurement and 

Assessment Network (HUMAN) Laboratory in the 711
th

 Human Performance Wing 

(HPW) Collaborative Interfaces Branch (RHCP) with contracting support from Aptima, 

Inc. and Oak Ridge Institute for Science and Education (ORISE).   The study was 

designed to quantify cognitive states of RPA operators through simulated missions within 

a simulated environment known as Vigilant Spirit.  The missions or scenarios varied in 

difficulty and the type of demands imposed on the operators.  During the experiment the 

participants’ performance and numerous physiological indicators were collected.  

Additionally, subjective workload measures, a Short Stress State Questionnaire, and 

background questionnaires were administered.   

This study included 2 tasks (surveillance and tracking) each with 4 levels of 

difficulty (e.g., task load).  For the surveillance task, participants’ were required to find 

and track a high value target (HVT) amidst distractors. The task load was manipulated by 

modifying the number of distractors (e.g., low; 16 or high; 48) and the clarity of the 
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visual feed (e.g., fuzz or no fuzz). A distractor was anyone walking around during the 

task who was not carrying a rifle.  The low distractor condition included 8 empty-handed 

women, 7 individuals carrying pistols, and 1 individual carrying a shovel. The high 

distractor condition included 24 empty-handed women, 20 individuals carrying pistols, 

and 4 individuals carrying shovels. For the tracking task, task load was modified by 

manipulating the number of targets to follow (1 or 2) and the terrain conditions (country 

highway or city streets). Each participant experienced one surveillance condition 

followed by one tracking condition using a total of 16 different scenarios. The 

surveillance condition always preceded the tracking condition. Within the 16 surveillance 

conditions and 16 tracking conditions there were 4 different task load conditions each 

experienced 4 times.   Even though the task load conditions were repeated, the scenarios 

differed based on designed routes of the targets. These manipulations result in two 2x2 

full-factorial designs, resulting in 4 difficulty conditions; for additional data points each 

participant received each condition 4 times.   

Participants completed the tasks using a standard computer having one keyboard, 

headset with microphone, a mouse, and three monitors. Each monitor was 24 inches 

(diagonal) and participants predominately relied on the information from the middle 

monitor.  This monitor displayed all information relevant for the primary task and the 

monitor on the right displayed the secondary task questions in text form.  Performance 

measures included: behavioral (i.e. button-press response times, mouse clicks, and voice 

and messaging communications which presented the questions) and mission performance 

(i.e. the operator’s ability to complete primary and secondary mission objectives) 



 

41 

measures.  Participants’ performance scores during the surveillance task were based on 

the timely identification of the High Value Targets (HVTs) and pursuit of the HVT once 

found. Each HVT was worth a total of 200 points. Participants’ performance scores 

during the tracking task were based upon the amount of time the target was in a simulated 

sensor feed and increased with the centering of the target in the sensor feed for a 

maximum of 800 points. Participants always started the experiment with the required 

zoom level to achieve maximum points, but had the opportunity to zoom in or out as 

desired, knowing that they would lose points if they zoomed out.  

During the experiment several physiological measures were collected, including: 

electroencephalogram (EEG), electrocardiogram (ECG), electrooculogram (EOG), 

respiration (amplitude and frequency), galvanic skin response, video based eye gaze and 

pupilometry, and voice stress analysis.  Additionally, saliva was collected before and near 

the end of each trial to permit exploration of biomarkers.  Body-mounted physiology 

recordings were collected using the BioRadio 150.  The BioRadio 150 is a battery 

powered wireless device which was developed by Cleveland Medical Devices.  The 

device recorded, stored, and completed simple processing of the biologically produced 

electrical signals. The User Unit of the BioRadio 150 is capable of amplifying and 

filtering data for signal conditioning as well as converting from analog-to-digital.  The 

current research involved analysis of select physiological data, including ECG and EOG.  

ECG and EOG were each recorded with a sampling frequency of 400 Hz.  In addition to 

the objective measures, participants completed the NASA Task Load Index (TLX) and 

the counterpart of the Dundee Stress State Questionnaire (DSQ), the Short Stress State 
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Questionnaire (SSQ), which is located in Appendix A.  NASA-TLX was used to collect 

subjective or perceived workload and is located in Appendix B. The SSSQ was used to 

collect subjective stress state to understand the following task-stressors: task engagement, 

distress, and worry. The data was collected immediately following each surveillance trial 

and tracking trial, prior to the start of the next scenario. It was transmitted to a centralized 

data bus developed by Aptima, Inc. and stored on its own secure closed-network server.   

Procedure 

The participants completed two sessions(approximately 2 hours in duration) 

consisting of study briefings and system training and the other four sessions 

(approximately 3 hours in duration) for data collection totaling an average of 17 hours. 

The 4 hours of training were divided over two training days, and the experimental 

sessions were completed on subsequent days. Participants were told their participation 

would help assess cognitive states and define adaptive aiding strategies for RPA 

operations.  They were reminded they were allowed to stop participating at any time.  

Training was completed by first introducing participants to the Vigilant Spirit Control 

Station shown in Figure 7: Vigilant Spirit Control Station (Middle monitor)Figure 7 and 

Figure 7, and a Multi-Modal Communication tool as shown in Figure 8. The Vigilant 

Spirit Control Station was on the far left and middle monitor and the Multi-Modal 

Communication tool was on the monitor furthest to the right.    
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Figure 6: Vigilant Spirit Control Station (Far left monitor) 

 

Figure 7: Vigilant Spirit Control Station (Middle monitor) 
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Figure 8: Multi-Modal Communication  

The participants were trained to use the Vigilant Spirit Control Station and Multi-

Modal Communication by breaking the required tasks into smaller skills which were 

trained one-at-a time to achieve a target minimum level of proficiency.  This was 

followed by full-length training missions, which integrated all skills.  The different 

scenarios and conditions are shown in Table 2.  The training missions increased in 

difficulty throughout the training session. The scenario order for each participant varied 

during the actual experimental trials.  
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Table 2: Scenarios and Conditions 

Scenario Surveillance Condition  Tracking  Condition 

1 1: Low Distractors, No Fuzz 1: One Target, Country Route 

2 1: Low Distractors, No Fuzz 2: Two Targets, Country Route 

3 1: Low Distractors, No Fuzz 3: One Target, City Route 

4 1: Low Distractors, No Fuzz 4: Two Targets, City Route 

5 2: High Distractors, No Fuzz 1: One Target, Country Route 

6 2: High Distractors, No Fuzz 2: Two Targets, Country Route 

7 2: High Distractors, No Fuzz 3: One Target, City Route 

8 2: High Distractors, No Fuzz 4: Two Targets, City Route 

9 3: Low Distractors, Fuzz 1: One Target, Country Route 

10 3: Low Distractors, Fuzz 2: Two Targets, Country Route 

11 3: Low Distractors, Fuzz 3: One Target, City Route 

12 3: Low Distractors, Fuzz 4: Two Targets, City Route 

13 4: High Distractors, Fuzz 1: One Target, Country Route 

14 4: High Distractors, Fuzz 2: Two Targets, Country Route 

15 4: High Distractors, Fuzz 3: One Target, City Route 

16 4: High Distractors, Fuzz 4: Two Targets, City Route 

 

Each of the experimental sessions included a period for sensor calibration and a 

baseline physiological data collection task in which the physiology measures were 

recorded while the participants completed a subjective questionnaire to include 

demographic and lifestyle factors. Each participant completed 16 scenarios with each one 

lasting approximately 17 minutes.  However, the exact duration of the experimental trial 

depended on the task conditions being performed, with the maximum session not 

exceeding four total hours.  As mentioned, each of the 16 experimental trials were 

completed with one of the surveillance conditions followed by one of the tracking 

conditions for a total of 16 surveillance and 16 tracking combinations as  shown in Table 

2.   The unique order or trial order of scenarios each participant experienced differed and 

are provided in Appendix C. 
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During each scenario, participants operated the VSCS which simulated 

instrument, control, and display panels, simulating control of multiple RPAs. The MMC 

tool simulated audio call signals, radio chatter, and chat (text) messages to the operator 

during the scenarios.  Following the completion of each surveillance condition and each 

tracking condition of a scenario the participants filled out the NASA TLX and the Short 

Stress State Questionnaire (SSSQ) subjective assessments as mentioned above.  The 

questionnaires and assessments were collected in an electronic format using Aptima’s 

Scenario-based Performance Observation Tool for Learning in Team Environments 

(SPOTLITE
TM

). SPOTLITE
TM

 is a generic platform used to streamline the observer 

based measures or self-reported measures data collection process.   

Physiological data were collected continuously throughout the scenarios for all 

sessions. Performance data were collected as participants completed or failed to complete 

tasks in the scenarios.  The scenario timeline is shown in Table 3. The surveillance or 

tracking tasks were the primary task variables.  There was an additional secondary task 

during each scenario representing two-way communications over a radio in the form of 

math questions.  The participants were instructed to answer the four auditory math 

questions within 30 seconds of hearing it, if they felt they could successfully complete 

both tasks. Additionally, the audio transcript was displayed as text in the MMC window 

of the control station. Participants were able to reference the text version of the question 

prior to answering the math question. Participants answered the questions by holding 

down the spacebar and orally saying their response. 
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Table 3: Scenario Timeline 
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Scoring was based on individual performance, and points in the surveillance 

scenarios were awarded for locating the HVT carrying a weapon in the market place and 

keeping the HVT on screen at the correct zoom level before the target disappeared under 

a tent. Performance points in the tracking scenarios were awarded for having the target on 

the screen and additional points were awarded based on how close the target was to the 

center of the screen.  Supplementary points in both scenarios were awarded for correctly 

answering the math questions within thirty seconds of hearing the questions.  Points were 

deducted for incorrect answers during the secondary task and no points were awarded or 

deducted for failing to answer the communications. The maximum score for either task 

was 1000 points.  

Model Selection and Validation 

Discrete Event Simulation (DES) models can be used to estimate dynamic system 

or operator performance over time. DES using IMPRINT permits an analyst to model the 

cognitive demands of operators during specific tasks to provide an objective estimate of 

operator cognitive workload.  To construct such a model, a task analysis was performed 

on the surveillance and tracking scenarios, task networks were developed as shown in 

Figure 9, Figure 10, and Figure 11. The Task Network Diagrams help illustrate the tasks 

participants completed throughout the scenarios.  The difficulty varied within the number 

of distracters present for the surveillance model and the number of targets and route in 

the tracking model. The difficulty is not portrayed in the Task Network Diagrams below, 

but rather is captured in the individual task times probability distributions. Pink tasks 

were completed by the interface and blue tasks were completed by the participant. 
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Figure 9: Surveillance Scenario Baseline Task Network Diagram 

 

 

Figure 10: Tracking Scenario Baseline Task Network Diagram
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Figure 11: Tracking Scenario with Two Targets Baseline Task Network Diagram
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Visual, auditory, cognitive, and perceptual workload values were assigned to each 

task within the model.  Task response times, obtained from the performance data for each 

participant for each scenario were added to create a set of 16 unique, user-specific models 

for each participant.  The reader should note that while IMPRINT models typically 

include stochastic variables, the models employed here were deterministic in nature, 

modeling the tasks with the exact times taken from each individual’s performance data. 

Once the model was completed for each participant, a simulation was run for each 

participant in IMPRINT to obtain objective cognitive workload values as a function of 

time. 

As shown in the timeline in Table 3 and in Figure 9, the Surveillance Scenario 

Baseline Task Network Diagram started with a HVT which appeared 10 seconds after the 

trial began.  There were four HVTs and the remaining three HVTs appeared at 69, 129, 

189 seconds. Tasks 2 was the time spent searching for the target.  Task 3 was the time 

spent following a target that had been found.  If the participant lost the target, Task 4 

would initiate until they either re-found the current HVT or the target permanently 

disappeared into the tent.  The HVTs entered the tent at 69, 129, 189, and 264 seconds 

during each trial as shown in Task 5.  This process repeats until the last HVT entered the 

tent, at which point the trial ended.  During the trial, the participants would hear a 

question in Task 6 at 33, 93, 153, and 228 seconds.  Participants then considered the 

question from 1-30 seconds in Task 8 and responded in Task 7.  Once the internal clock 

reached 265 seconds and all four questions had been asked, which coincided with the 

fourth target entering the tent, the scenario ended. 
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There were two separate tracking scenarios, one in which there was one HVT and 

another in which there were two HVTs.  As shown in the timeline in Table 3 and Figure 

10, the Tracking Scenario Baseline Task Network Diagram started with a HVT which 

appeared 20 seconds after the trial began.  Once the participant located the HVT where 

they were trained to look for it, they followed the HVT on foot in Task 2.  If they lost the 

HVT during this time, they searched for the HVT in Task 5. They continued to follow the 

HVT on the Bike in Task 15 starting at 80 seconds until the HVT enter a tent at the end 

of the scenario in Task 23.  If the participant lost the HVT at any point they would search 

for the HVT on the Bike in Task 17.  After the HVT entered the tent, the trial ended.  

During the trial the participants would hear a question in Task 12 at 134, 194, 254, and 

314 seconds.  Participants then considered the question from 1-30 seconds in Task 28 and 

responded in Task 13.  Once the internal clock reached 380 seconds which coincided 

with the HVT entering the tent, the scenario ended. 

As shown in the timeline in Table 3 and in Figure 11, the Tracking Scenario with 

Two Targets Baseline Task Network Diagram started with a HVT which appeared 20 

seconds after the trial began.  Once the participant located HVT1 where they were trained 

to look for it, they followed the HVT in Task 10.  They continued to follow HVT1 on the 

Bike in Task 15 starting at 80 seconds until HVT1 enter a tent at the end of the scenario 

in Task 23.  If the participant lost HVT1 at any point they would search for HVT1 on the 

Bike in Task 17.  The second HVT appeared at 50 seconds.  Once the participant located 

HVT2 where they were trained to look for it, they followed HVT2 in Task 11.  They 

continued to follow HVT2 on the Bike starting at 110 seconds in Task 24 and eventually 
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watched HVT2 enter a tent at the end of the scenario in Task 27.  If the participant lost 

HVT2 at any point they would search for HVT2 on the Bike in Task 26. Thus, the 

participant was responsible for tracking both targets simultaneously.  After both HVTs 

entered the tents, the trial ended.  During the trial the participants would hear a question 

in Task 28 at 134, 194, 254, and 314 seconds.  Participants then considered the question 

from 1-30 seconds in Task 30 and responded in Task 29.  Once the internal clock reached 

410 seconds which coincided with both HVTs entering the tent, the scenario ended. 

Verification of the baseline model was conducted using peer walkthroughs and a 

subject matter expert (SME) from 711
th

 Human Performance Wing (HPW) Collaborative 

Interfaces Branch (RHCP) who provided workload data. The SME, who helped designed 

the study, walked through the Task Network Diagrams for logical flow and gave 

predicted workload values based on the baseline model task descriptions and an 

explanation of VACP.  Additionally the model was validated against task times and 

performance. IMPRINT measures workload based on the length of time an operator 

spends doing a specific task in relationship to the combined VACP value determined for 

the interfaces of each specific task as seen in Table 4.  The DES models cognitive 

workload which enables the creation of initial workload profiles.  These workload 

profiles are used to show the individual differences in objective operator workload. 

Figure 12 provides an example of a workload profile.  
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Table 4: VACP Workload Assigned by Task Node 

 

Brain  

(Cognitive) 

Headset 

(Auditory) 

Headset  

(Speech) 

Keyboard  

(Fine 

Motor) 

Mouse  

(Fine 

Motor) Monitor (Visual) 

HVT 

Appears 

0.0 0.0 0.0 0.0 0.0 0.0 

Find HVT 
4.6 (Evaluation/ 

Judgment) 

0.0 0.0 0.0 2.6 

(Continuous 

Adjustive) 

6 .0 

(Visually Scan/ 

Search/Monitor) 

Follow 

HVT 

4.6 (Evaluation/ 

Judgment) 

0.0 0.0 0.0 2.6  

(Continuous 

Adjustive) 

4.4  

(Visually Track/ 

Follow) 

Lose HVT 
4.6 (Evaluation/ 

Judgment) 

0.0 0.0 0.0 2.6  

(Continuous 

Adjustive) 

6 .0 

(Visually Scan/ 

Search/Monitor) 

HVT in 

Tent 

0.0 0.0 0.0 0.0 0.0 0.0 

Hear 

Question 

0.0 6 .0 

(Interpret 

Semantic 

Content) 

0.0 0.0 0.0 0.0 

Respond 

0.0 0.0 2 .0 

(Simple) 

2.2  

(Discrete 

Actuation) 

0.0 0.0 

Consider 

Question 

7 .0 

(Estimation, 

Calculation, 

Conversion) 

0.0 0.0 0.0 0.0 0.0 

There are no Gross Motor Workload values because there are no high physical strain activities. 

There are no Tactile Workload values because there are no system alerts that touch the human body. 
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Figure 12: Workload Profile 

Model Assumptions and Limitations  

The surveillance model assumes the participant is always looking for the HVT. 

The participant does not know how many HVT’s there are total or that there is a period of 

time when there is not an HVT on screen.  It is assumed they are continuing to search 

during these times. The tracking model assumes all operators located the start tent, 

centered the camera, waited for the target to appear, identified the HVT, watched the 

HVT enter the tent, leave the tent, and began tracking the target to the best of their 

abilities.  These assumptions match the provided data.  Once tracking, it is assumed the 

operator will not change zoom levels unless they lose the threat.  The secondary task of 

“Listen to Question” assumes the operator listens to the question and does not read the 

text on the computer screen.  The “Consider Question” task assumes the operator was 
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calculating the answer from the time the question ended until they pressed the space bar 

to provide an answer.  The individual models account for the actual performance of the 

participants. A major limitation of this study is the small sample size and the relative high 

performance of most participants for the tracking task.   

Data Analysis  

The hypothesis that there were four distinct divergent groups of individuals based 

on their average perceived workload ratings from NASA-TLX and their performance was 

tested looking for the most extreme participants based on the Euclidian distance from the 

origin and a MANOVA for statistical significance. The raw NASA-TLX scores were 

used due to the specific nature of this experiment and the similarity of dimensions 

required by the task across all scenarios. The NASA-TLX and performance data for both 

the surveillance and tracking conditions were checked for normality by comparing he 

skewness and kurtosis values combined and separately against the threshold range of -1 

to 1 (Field 2009).  If one of the conditions did not pass the test for normality, it would be 

scaled or eliminated from further analysis. The NASA-TLX and performance values were 

each normalized using z-scores to determine each participants’ centroid.  A participant 

centroid was calculated for each participant using the average of each participant’s 

normalized workload and performance scores across the scenarios to compute a vector 

(mean normalized workload, mean normalized performance). The distance was 

calculated using the participant centroid coordinates, specifically the Euclidean distance 

of the centroid from the origin and is shown in Equation 1.  
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Equation 
1 

2 2

x y x y((S  , S ), (0,0)) ((S  -0) +(S -0) )Dist 
 
 

(1)  

where: 

Sx= NASA-TLX average for Participant 

Sy= Performance average for Participant 

  

The MANOVA examined each participant as its own separate group, combining 

the NASA-TLX and performance scores for each individual to represent the participant 

across all 16 scenarios. Participants were grouped together to determine if overall, they 

were divergent from each other across all scenarios. The MANOVA quantitatively tested 

if the participants differed across the NASA-TLX and performance spectrums separately. 

Individuals, who showed statistical significance for both scales, would be said to 

represent the distinct groups. Participants who visually looked like they were more 

representative of the distinct group were added in the remaining analyses, noting they 

were not significant representations of that group.  

The hypothesis that there were measures which were characteristic of red-line 

individuals was tested by first looking for the specific scenarios in which participants 

were identified as being in the top ten highest workload and bottom ten lowest performers 

as well as the bottom ten lowest workload and top ten highest performers based on the 

scores for all 192 scenarios. The objective workload of these specific scenarios and 

individuals were analyzed looking at the minimum, maximum, average, range, total sum 

of VACP, and time spent in each task, to determine if patterns existed in those areas 

which were representative of red-line participants and not. Since patterns were found, 
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VACP was used to analyze the overarching hypothesis, that there would be a weak 

correlation between the objective workload (VACP) and physiological data when the 

perceived workload (NASA-TLX) was low and moderate to high correlation between the 

objective workload (VACP) when the perceived workload (NASA-TLX) was high.  

The tracking condition one (one target, country route) was used as a vanilla 

baseline in a portion of the physiology analysis. The tracking condition one was chosen 

because it was a minimally demanding task. Specifically, the time from when the 

participant started tracking the target on the motorcycle to the moment just before the 

first question was asked was used to compute a vanilla baseline value. This was a 24 

second period of time.  Each participant experienced this condition four times. Two 

vanilla baselines were calculated.  One encompassed all four conditions, which spread 

across multiple sessions on different days. The other used the 24 seconds from the second 

session.  This second session occurred on the second day. The second session on the 

second day was chosen as one of the vanilla baselines to ensure the data was not the first 

experimental scenario on any day and to help minimize potential learning effects which 

could have occurred. The change in HR and HRV were calculated by taking the scenario 

specific data from HR and HRV minus the vanilla baseline. Blinks were counted across a 

sliding 60 second interval and given a value for each second. The fixation values 

represent the amount of time between saccades. It was expected that there would be a 

higher correlation with the physiological measures when individuals reported being 

stressed, which manifest itself in higher NASA-TLX scores. 
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Heart rate was calculated by determining the number of beats in each 

non-overlapping 15 second interval throughout the experiment. Similarly, heart rate 

variability was calculated by taking the inverse of the instantaneous time between heart 

beats as provided by the 711
th

, and applying them across the same non-overlapping 15 

second intervals. Splines were then fit between the individual data points and used to 

interpolate HR and HRV at 1 second intervals with second 0 being the start of the scoring 

period. The EOG signal was analyzed to determine blinks and saccades. This analysis 

began by fitting a 1000 point moving average through the 480 Hz EOG signal, 

calculating a difference between the EOG signal and the moving average and 

thresholding the difference value to indicate the location of blinks. The number of blinks 

were then counted at one second intervals within a sliding 1 minute window. The blink 

signals were then removed from the EOG signal, the EOG signal was subjected to a 

differencing operator to clearly indicate edges in the EOG signal corresponding to 

saccades. A similar process of computing a moving average and thresholding the 

difference between the differenced EOG signal and the moving average was used to 

identify saccades. The number of saccades were then counted at one second intervals 

within a 60 second moving window. 

 



 

 60 

IV. Analysis and Results 

Chapter Overview 

The analysis of the data as outlined by Chapter 3 is explained in Chapter 4. 

Detailed results for each investigation are provided. The results are interpreted and 

summarized in the discussions in context to the current areas of interests.  

NASA-TLX and Performance Score Results 

Normality was examined by looking at the skewness and kurtosis of the raw 

NASA-TLX and performance data for both the surveillance and tracking tasks as well as 

the data from the combination of the tasks. The raw data separated by task type, 

Surveillance and Tracking, are shown in Figure 13 and Figure 14 respectively. As 

visually demonstrated in Figure 13, Surveillance scores appear to differ along both the 

NASA-TLX and Performance axes while the participants’ performance was generally 

high across all experimental trials for the tracking task. The Surveillance and Tracking 

data when combined were normally distributed, with NASA-TLX having a skewness of 

0.391 (SE= 0.125) and kurtosis of -0.457 (SE=0.248) and performance a skewness of 

-0.622 (SE= 0.125) and kurtosis of -0.811 (SE=0.248). Data is normally distributed if the 

skewness and kurtosis values fall within the range from -1 to 1 (Field 2009). When 

separated, data for the surveillance task alone was also normally distributed, with 

NASA-TLX having a skewness of 0.332 (SE= 0.175) and kurtosis of -0.383 (SE=0.349) 

and performance having a skewness of -0.135 (SE= 0.175) and kurtosis of -0.723 

(SE=0.349).  However, data for the tracking task alone was non-normality distributed, 
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with NASA-TLX having a skewness of 0.421 (SE= 0.175) and kurtosis of -0.553 

(SE=0.349) and performance having a skewness of -3.202 (SE= 0.175) and kurtosis of 

14.187 (SE=0.349).  This statistical description confirms that there is a clear ceiling effect 

in participants’ performance scores for the tracking task.  As the primary focus of this 

thesis is to investigate individual differences between participants whose subjective 

workload ratings and performance scores differed, the tracking task was eliminated from 

further analysis, permitting focused investigation of the surveillance task data. 

 

Figure 13: Surveillance Data 

 

Figure 14: Tracking Data 
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The NASA-TLX raw scores and performance data were then normalized using a 

z-score, see Equation 2 to provide these measures on equivalent units, permitting 

comparison. The equation provided in Equation 2 calculates the distance between the raw 

scores and the population mean of an individual’s score across all 16 scenarios in units of 

standard deviation. Participant centroids were then calculated using the average of each 

participant’s normalized subjective workload and normalized performance scores across 

the 16 surveillance scenarios determine the centroid of the participants’ data within the 

resulting two dimensional space (normalized subjective workload and normalized 

performance score). The distance of this centroid from the sample centroid was used to 

identify the extreme participants.  This distance was calculated using the Euclidian 

distance from the origin using the formula in Equation 1. These distances are listed in 

Table 5 and plotted in 15. 

Equation 
2 

( )x
z








 

 

(2)  

where: 

z= standardized score 

x= Actual raw score 

= Mean of surveillance scores 
 =Standard Deviation of surveillance scores 

 

Table 5: Participant and Distances from Origin 

2 4 5 6 7 8 9 10 11 12 13 14 

0.62 0.53 0.39 0.47 0.97 1.78 1.15 1.20 0.92 0.82 1.22 0.19 
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Figure 15: Z-Score Plot of Participant Centroids 

 

Based on the furthest distances from the origin, participant’s 7, 8, 9, 10, 11, and 

13 were identified as the participants whose combined performance and subjective 

workload varied the most from the group average based upon normalized using the 

z-scores.  Specifically, participant 9 represented a participant exhibiting generally high 

performance with low subjective workload scores.  Participants 11 and 13 represented 

participants with relatively low performance and low subjective workload scores.  
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Participants 7 and 10 represent participants with generally high performance and high 

subjective workload scores and participant 8 exhibited relatively low performance and 

high subjective workload scores.  

To quantitatively test if the participants differed across both of the NASA-TLX 

and performance spectrua, a MANOVA was applied to the surveillance data. The 

MANOVA combined the NASA-TLX and performance scores for each individual as a 

group to represent the participant across all 16 surveillance scenarios. A MANOVA 

examined NASA-TLX and Performance as Dependent Variables (DVs) and the groups of 

participants as Independent Variables (IVs). A one-way MANOVA revealed a significant 

multivariate main effect for participants; Wilks’ λ = .140, F (22, 258) = 27.20, p <. 001, 

partial eta squared = .626. Wilks’ lambda directly measures the proportion of variance in 

the combination of DVs that is unaccounted for by the IV and ranges from 0 (no variance 

in the DV is predicted by the IV) to 1 (the variance in the DV is fully predicted by the 

IV). 

A Tukey’s Post Hoc test was used to determine the difference between mean 

NASA-TLX and Performance values between participants. Table 6 shows the results of 

the Tukey HSD test which found the highlighted participant combinations to be 

significantly different from each other based on NASA-TLX scores (p< 0.05).  

  



 

 65 

Table 6: NASA-TLX Tukey HSD Results 

 2 4 5 6 7 8 9 10 11 12 13 

4 0.027 -          

5 0.438 0.992 -         

6 0.916 0.000 0.006 -        

7 0.004 0.000 0.000 0.365 -       

8 0.000 0.000 0.000 0.000 0.001 -      

9 0.000 0.166 0.005 0.000 0.000 0.000 -     

10 0.000 0.000 0.000 0.006 0.948 0.111 0.000 -    

11 0.001 0.999 0.633 0.000 0.000 0.000 0.744 0.000 -   

12 0.000 0.896 0.197 0.000 0.000 0.000 0.986 0.000 1.000 -  

13 0.000 0.042 0.001 0.000 0.000 0.000 1.000 0.000 0.389 0.848 - 

14 1.000 0.009 0.239 0.984 0.014 0.000 0.000 0.000 0.000 0.000 0.000 

 

Table 7 shows the results of the Tukey HSD test for performance. Highlighted 

cells indicate participant mean difference values which were indicated to indicate 

statistically different scores between pairs of participants (p< 0.05). 

Table 7: Performance Tukey HSD Results 

 2 4 5 6 7 8 9 10 11 12 13 

4 0.483 -          

5 0.996 0.984 -         

6 0.371 1.000 0.959 -        

7 1.000 0.830 1.000 0.732 -       

8 0.029 0.989 0.384 0.997 0.127 -      

9 1.000 0.713 1.000 0.599 1.000 0.076 -     

10 1.000 0.913 1.000 0.843 1.000 0.199 1.000 -    

11 0.016 0.965 0.286 0.987 0.076 1.000 0.044 0.126 -   

12 0.506 1.000 0.987 1.000 0.846 0.986 0.734 0.924 0.958 -  

13 0.061 0.999 0.556 1.000 0.225 1.000 0.144 0.329 1.000 0.998 - 

14 0.837 1.000 1.000 1.000 0.985 0.852 0.955 0.996 0.743 1.000 0.944 

 

NASA-TLX and Performance Score Discussion 

NASA TLX scores for participants 9 and 11 were statistically lower than the 

NASA TLX scores for participants 2 and 8, suggesting participants 9 and 11 represent 

individuals who provided low subjective workload ratings and 2 and 8 represent 
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participants who provided high subjective workload ratings.  Mean performance scores 

for participants 2 and 9 was statistically higher than the mean performance score for 

participant 11.  This finding suggests that participant 11 is representative of a low 

performing individual among the available participants and 2 and 9 represent the high 

performing individuals among the available participants. The performance for participant 

8 was statistically lower than the performance for participant 2 suggesting participant 8 

represents the low performing individual. Although the performance for participants 7 

and 10 was not statistically different from the performance of participants 8, their 

NASA-TLX values were statistically higher than the NASA TLX values for most 

participants, including participant 2, which is in the same high performance-high 

subjective workload quadrant.  Therefore, the data from these participants was retained 

for further analysis since their centroids were further from the origin as displayed in 15 

than participant 2.   This interpretation is visually represented in Table 8 and the 

descriptive statistics of the divergent participants are shown in Table 9.  

Table 8: Divergent Participants 

 Low Workload High Workload 

High Performance Participant 9 Participant 2  

(with analysis of 7&10) 

Low Performance  Participant 11 Participant 8 

 

Table 9: Descriptive Statistics of Divergent Participants 

Descriptive Statistics  P2 P8 P9 P11 P7 P10 

Mean-NASA-TLX 42.24 66.51 24.12 29.58 53.75 57.92 

Standard Deviation- NASA-TLX 6.08 9.15 7.90 16.43 4.35 8.78 

Mean-Performance 660.42 469.09 642.50 458.46 631.82 621.30 

Standard Deviation-Performance 114.20 144.48 134.69 116.93 166.24 184.30 
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As shown in Table 8, participants’ individual data sets were shown to differ from 

one another based upon perceived workload ratings (NASA-TLX) and performance. The 

individual differences between participants were identified using the greatest distance 

from the origin and as well as quantitatively through the MANOVA analysis. Further 

analysis of theses participants’ data will be conducted to answer Investigative Questions 

2 and 3. This analysis generally confirms Hypothesis 1 as the performance of some 

individuals were statistically different from other participants in terms of their subjective 

workload scores, performance or both. 

VACP Red-line Characteristics Results 

Individual participant scenarios were ranked according to a combination of 

performance and NASA TLX.  From these rankings the 3 participant scenarios with the 

most extreme rankings were selected to explore the workload conditions associated with 

red-line.  For Participant 9, scenarios 11, 3, and 2, were identified as the most 

representative for the high performing, low subjective workload participants. For 

Participant 8, scenarios 13 and 8, and for participant 11, scenario 6, were identified as the 

most representative for the low performing, high subjective workload participants. In 

Table 10, Table 11, and Table 12, PX SY represents Participant number X in Scenario 

number Y. The ranking of NASA-TLX and performance for each of the chosen scenarios 

are shown in Table 10 with ranks ranging from 1 to 192.  
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Table 10: NASA-TLX and Performance Rankings 

 NASA-TLX Ranking Performance Ranking 

P9 S11 1 9 

P9 S3 4 1 

P9 S2 9 3 

P8 S13 182 179 

P11 S6 186 191 

P8 S8 191 186 

 

Once identified, the objective workload values, as modeled by VACP, for the 

specific participants and scenarios were analyzed to attempt to identify patterns that 

differentiated red-lined participant-condition combinations from those that were not. The 

minimum, maximum, range, time weighted average and sum of VACP values were 

examined for each participant and scenario of interest and shown in Table 11. These 

metrics showed that participant-scenario combinations having a high subjective workload 

and low performance experienced a higher VACP average, except for P8 S13. Also, the 

participant-scenario conditions having a high subjective workload and low performance 

reached a higher maximum VACP value and had a higher sum of VACP values than 

those in the low subjective workload, high performance category except for P8 S13. 
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Table 11: Descriptive VACP Statistics of Top and Bottom Ten 

 Low NASA-TLX Workload, 

High Performance 

High NASA-TLX Workload, 

Low Performance 

VACP P9 S11 P9 S3 P9 S2 P8 S13 P11 S6 P8 S8 

Min 11.6 11.6 11.6 11.6 11.6 11.6 

Max 19.20 18.60 19.20 20.20 20.20 20.20 

Average 14.82 15.15 14.92 15.07 16.17 16.14 

Range 7.6 7 7.6 8.60 8.60 8.60 

Sum  3783.8 3862.8 3803.8 3844.6 4125.6 4114.8 

Cond 

Type 

Low 

Distractor 

Fuzz 

Low 

Distractor 

No Fuzz 

Low 

Distractor 

No Fuzz 

High 

Distractor 

Fuzz 

High 

Distractor 

No Fuzz 

High 

Distractor 

No Fuzz 

 

The different surveillance subtasks are shown in Table 11 along with their 

associated VACP values in parentheses.  The total number of seconds each participant 

spent in the outlined subtask throughout the scenario are also shown in Table 12.  

Table 12: Time Spent across Surveillance Tasks of Top and Bottom Ten 

 Low NASA-TLX 

Workload, 

High Performance 

High NASA_TLX 

Workload, 

Low Performance 

Subtask (VACP value) P9 S11 P9 S3 P9 S2 P8 S13 P11 S6 P8 S8 

Following HVT (11.6) 54 46 54 22 17 11 

Find (Search for) HVT or 

Lose HVT (13.2) 
98 93 94 150 118 124 

Follow HVT & Respond 

(15.8) 
11 10 12 2 0 3 

Find (Search for) HVT & 

Respond (17.4) 
1 0 0 8 9 3 

Follow HVT & Hear 

Question (17.6) 
23 28 23 0 0 0 

Follow HVT & Consider 

Question (18.6) 
63 78 67 5 0 15 

Find (Search for) HVT & 

Hear Question (19.2) 
5 0 5 28 28 28 

Find (Search for) HVT & 

Consider Question (20.2) 
0 0 0 40 83 71 

 

 This information provided a noticeable pattern.  The first three columns of Table 

12, which includes participant-scenario combinations with low subjective workload and 
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high performance, show the participant always found the HVT before considering the 

questions. Additionally, there were very few occurrences when the participant was 

searching for the HVT while they heard the questions (10 seconds total) or while they 

responded to the questions (1 second total). In contrast, the last three columns of Table 

12, corresponding to participant-scenario combinations with high subjective workload 

and low performance, show that the participants had not found the HVT when they heard 

the questions.  Additionally, there were very few occurrences when the participants were 

following the HVT while they considered the questions (20 seconds total) or while they 

responded to the questions (5 seconds total). 

VACP Red-line Characteristic Discussion 

Question one analyzed the performance and subjective workload of individual 

participants across all surveillance scenarios.  Question two initially determined the most 

extreme scenarios in terms of both performance and subjective workload to identify the 

scenarios which simultaneously had the lowest performance and highest subjective 

workload ratings or had the highest performance and the lowest subjective workload 

ratings.  Participants who had difficulty performing the task and indicated high subjective 

workload were analyzed separately in two groups of scenarios in an attempt to identify 

scenarios which were clearly manageable by the participant.  Through these means, 

trends in VACP score were explored which might indicate differences in manageable 

workload conditions versus workload conditions that were above red-line for at least 

some period of time.   Perhaps not surprisingly, the measures which are characteristics of 

red-lined experimental conditions based on this analysis appear to stem from the addition 
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of the secondary task. The scenarios with high task performance and low subjective 

workload generally included conditions in which the participant was able to quickly 

identify the HVT, before the secondary task was introduced. Conversely, the scenarios 

with low task performance and high subjective workload generally included conditions in 

which the participant was not able to quickly identify the HVT and continued to search 

for the HVT past the moment in time when the secondary task was introduced.  However, 

more analysis needs to be completed specifically breaking the 16 scenarios into groups 

based on the four conditions. This will determine if the patterns were reliable measures to 

identify individuals as red-line or not across similar scenario conditions.   

Divergent Participant Physiological Measures and VACP Results 

In order to investigate if the physiological measures correlated with the objective 

workload profile for all of the divergent participants the HR, HRV, Blinks, and Fixations 

were examined. Descriptive statistics of the physiological and VACP measures for the 

participants whose subjective workload and performance differed the most from the mean 

across participants are outlined in Table 13.  

Table 13: Descriptive Statistics 

 P2  P8 P9 P11 P7 P10 

Mean-HR 87.23 94.87 59.07 59.51 82.08 58.08 

Standard Deviation-HR 6.20 10.93 5.98 6.95 7.56 7.75 

Mean-HRV 0.03 0.04 0.05 0.11 0.04 0.06 

Standard Deviation-HRV 0.03 0.05 0.03 0.08 0.03 0.09 

Mean-Blinks 17.40 8.79 11.07 9.71 28.61 13.94 

Standard Deviation-Blinks 7.80 4.06 4.69 4.61 7.52 6.78 

Mean-Fixation 0.02 0.02 0.02 0.01 0.02 0.01 

Standard Deviation-Fixation 0.01 0.004 0.01 0.002 0.004 0.003 

Mean-VACP 15.03 15.41 15.42 14.84 15.29 14.96 

Standard Deviation-VACP 3.02 3.21 3.16 2.99 3.08 3.05 
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HR, HRV, blinks, and fixations (saccades) were correlated with the objective 

workload profile for all divergent participants across all 16 surveillance scenarios. It was 

originally hypothesized that there would be a weak correlation between the objective 

workload (VACP) and physiological data when the perceived workload (NASA-TLX) 

was low and moderate to high correlation between the objective workload (VACP) when 

the perceived workload (NASA-TLX) was high. This analysis assumed if a participant 

was in the high workload, low performance or high workload, high performance, they 

had a higher likelihood of experiencing red-line during the scenarios.  Note that this 

differs from the traditional definition of red-line.  However, this assumption was 

necessary to provide data from multiple participants in the red-line condition to facilitate 

comparison. 

Correlations of the physiological measures were run for each of the identified 

participants to determine which physiological measures were statistically significant out 

of HR, HRV, blinks, and fixations.  HR and HRV metrics were determined as the 

difference from vanilla baseline. The correlations for Participants 2, 8, 9, 11, 7 and 10 are 

shown in Table 14, Table 14, Table 15, Table 16, Table 17, and Table 18, respectively 

and statistically significant correlations are highlighted. 

Participant 2 had a high subjective workload and high performance score and was, 

therefore, assumed to be operating beyond red-line for at least a portion of some 

experimental conditions. As shown in the correlation table for P2, there was a positive 

and statistically significant correlation between VACP and HR, HRV, Blink Rate, and 

Fixation which indicated that the higher the participant’s VACP the higher the 
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participant’s HR, HRV, Blink Rate, and Fixation.  It is important to note, overall the data 

did not show strong linear relationships and are likely not strong enough to be 

meaningful. While significant, the low Pearson correlation coefficients indicated that a 

very small portion of the variance in the VACP scores were accounted for by the 

physiology measures, with these variance values ranging from 0.17% for HRV to 1.53% 

for HR. The correlation between VACP and HR supports the hypothesis that HR will be 

positively correlated for participants considered to be red-lined. The fact that the 

correlation between VACP and HRV, Blink Rate, and Fixations was positive, opposite of 

what was hypothesized.  It is worth noting, however, that HR was negatively correlated 

with HRV, blink rate and fixation rate as is typical in previous research.   

Table 14: Participant 2 Pearson Correlation Matrix 

  HR HRV Blink Rate Fixation 

HRV -0.168*** -   

Blink Rate -0.079*** 0.127*** -  

Fixation -0.050** 0.066*** 0.448*** - 

VACP 0.124*** 0.041** 0.120*** 0.082*** 
 Significance: * p-value < .05; ** p-value <.01; *** p-value <.001 

Participant 8 had a high subjective workload and low performance score. As 

predicted and shown in the correlation table for P8, there was a statistically significant 

positive correlation between VACP and HR.  Unexpectedly, Blink Rate also increased 

with increasing VACP.  There were not significant correlations between VACP and HRV 

or Fixations.  Again, the correlation among the measures was quite low. While 

significant, Blink rate accounted for only 2.40% of the variance in the VACP score.  HR 

accounted for only 3.06% of the variance in the VACP score. The correlation between 

VACP and HR supports the hypothesis that HR will be positively correlated for 
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participants considered to be red-lined. The direction of correlation between VACP and 

Blink Rate is opposite the hypothesized direction.  Note that once again, HR was 

negatively correlated with HRV and blink rate.  However, HR did not have a statistically 

significant correlation with fixation rate. 

Table 15: Participant 8 Pearson Correlation Matrix 

 HR HRV Blink Rate Fixation 

HRV -0.346*** -   

Blink Rate -0.173*** 0.032* -  

Fixation -0.021 0.011 -0.271*** - 

VACP 0.175*** 0.012 0.155*** 0.030 
Significance: * p-value < .05; ** p-value <.01; *** p-value <.001 

Participant 9 had a low subjective workload and a high performance score. As 

shown in the correlation table for P9, there were statistically significant positive 

correlations between VACP and HR, HRV, Blink Rate, and Fixation which indicated that 

the higher the participant’s VACP, the higher their HR, HRV, Blink Rate, and Fixation. 

As previously noted, the data were not very predictive. While significant, the percent of 

variance in the VACP accounted for by the other variables ranged from 0.12% for 

Fixations to 4.08% for HR. The significant correlations do not support the hypothesis that 

physiological measures would not be correlated for participants identified as having a low 

subjective workload and high performance.  It is interesting, however, that for this 

participant heart rate is also positively correlated with HRV, blink rate, and fixation rate 

which is atypical of the direction of correlation observed in previous studies of workload. 
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Table 16: Participant 9 Pearson Correlation Matrix 

 HR HRV Blink Rate Fixation 

HRV 0.091*** -   

Blink Rate 0.176*** 0.026 -  

Fixation 0.122*** 0.038* -0.162*** - 

VACP 0.202*** 0.036* 0.072*** 0.034* 
Significance: * p-value < .05; ** p-value <.01; *** p-value <.001 

Participant 11 had a low subjective workload and low performance score. As 

shown in the correlation table for P11, there were statistically significant positive 

correlations between VACP and HR and Blink Rate which indicated that the higher the 

participant’s VACP, the higher their HR and Blink Rate. Similarly, the measures were 

not highly correlated. While significant, the variance in the VACP scores accounted for 

by the other measures ranged from only 0.88% for HRV to 1.98% for HR. The significant 

correlations do not support the hypothesis that physiological measures would not be 

correlated for participants identified as having a low subjective workload and low 

performance.  However, once again, HR was atypically positively correlated with HRV 

and blink rate.  HR was not significantly correlated with fixation rate. 

Table 17: Participant 11 Pearson Correlation Matrix 

 HR HRV Blink Rate Fixation 

HRV 0.384*** -   

Blink Rate 0.070*** 0.123*** -  

Fixation -0.009 -0.056*** -0.390*** - 

VACP 0.141*** 0.024 0.094*** -0.003 
Significance: * p-value < .05; ** p-value <.01; *** p-value <.001 

Participant 7 was left in for further analysis as a participant who had a high 

subjective workload and high performance score. As shown in the correlation table for 

P7, there were statistically significant positive correlations between VACP and HR and 

Blink Rate which indicated that the higher the participant’s VACP, the higher their HR 
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and Blink Rate. Again, the correlation was quite low. While significant, HRV accounted 

for only 0.36% of the variance in VACP and HR accounted for only 5.81% of the 

variance in the VACP score. The correlation between VACP and HR supports the 

hypothesis that HR will be positively correlated for participants with high workload. The 

correlation between VACP and Blink Rate is opposite of what was hypothesized.  

However, HR is negatively correlated with HRV as expected but unexpectedly positively 

correlated with fixation rate. 

Table 18: Participant 7 Pearson Correlation Matrix 

 HR HRV Blink Rate Fixation 

HRV -0.170*** -   

Blink Rate -0.009 -0.030 -  

Fixation 0.228*** -0.046** -0.178*** - 

VACP 0.241*** 0.015 0.060*** -0.003 
Significance: * p-value < .05; ** p-value <.01; *** p-value <.001 

Participant 10 was also retained in the analysis as a participant who had a high 

subjective workload and high performance score. As shown in the correlation table for 

P10, there were statistically significant positive correlations between VACP and HR, 

HRV, and Fixations which indicated that the higher the participant’s VACP, the higher 

their HR, HRV, and Fixation rate. As previously noted, the correlation coefficients were 

quite low. While significant, the variance of the VACP values accounted for by the other 

measures ranged from 0.23% for HRV to1.35% for HR. The correlation between VACP 

and HR supports the hypothesis that HR will be positively correlated for participants 

considered to be red-lined. The correlations between VACP and HRV and Fixation rate 

are opposite of the hypothesized direction.  HR was positively correlated with HRV, 
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blink rate, and fixation which would not have been anticipated from previous workload 

studies. 

Table 19: Participant 10 Pearson Correlation Matrix 

 HR HRV Blink Rate Fixation 

HRV 0.362*** -   

Blink Rate -0.195*** -0.015 -  

Fixation 0.200*** -0.018 -0.134*** - 

VACP 0.116*** 0.048** 0.029 0.049** 
Significance: * p-value < .05; ** p-value <.01; *** p-value <.001 

Figure 12 graphically shows the variance accounted for by each of the 

physiological measures when correlated with VACP.  Participant’s measures outlined in 

black were statistically significant. Participant’s measures outlined in red were not 

statistically significant.   As shown, the correlation with HR was generally higher than 

any other measure but the percent variance in the VACP score accounted for any 

physiology measure never exceeded 6% for any participant. 

 

Figure 16: Variance Predicted by Physiological Measures when Correlated with 

VACP 
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 Figure 13 graphically shows the variance predicted by each of the physiological 

measures and VACP when correlated with HR.  Participant’s measures outlined in black 

were statistically significant. Participant’s measures outlined in red were not statistically 

significant.  Perhaps not surprisingly, the highest correlations with HR occurred for HRV 

but again the squared correlation coefficients never exceeded 0.15. 

 

Figure 17: Variance Predicted when Correlated with HR 

HR and Blink Rate provided the two statistically significant correlations when 

examining across all identified statistically relevant participants (P2, P8, P9, and P11) 

and scenarios. One-tailed, one-sample t-tests were conducted to compare HR and HRV 

differences from baseline to the vanilla baseline for HR and HRV for P2, P8, P9, P11, 

P7, and P10 separately. Table 20 shows the results of the one-sample t-tests for P2, P8, 

P9, P11, P7, and P10.   All participants’ showed a statistical significant difference for the 

change in HR from the vanilla baseline as well as for the change in HRV from the vanilla 
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baseline. These results suggest that the changes in HR and HRV as calculated from the 

vanilla baselines are statistically different from zero. However, they are in the opposite 

direction as expected. It was anticipated that HR would be in the positive direction and 

HRV would be in the negative direction.   

Table 20: One-tailed, one-sample t-tests Statistics 

 HR   HRV   

 t Sig.  

(1-tailed) 

Effect Size 

(r
2
) 

t Sig.  

(1-tailed) 

Effect Size 

(r
2
) 

P2 -11.79 0.000 0.03 8.22 0.000 0.02 

P8 -23.40 0.000 0.12 6.72 0.000 0.01 

P9 -7.25 0.000 0.01 19.92 0.000 0.09 

P11 -9.84 0.000 0.02 -3.19 0.000 0.002 

P7 -28.84 0.000 0.17 9.62 0.000 0.02 

P10 15.50 0.000 0.06 11.25 0.000 0.03 

Divergent Participant Physiological Measures and VACP Discussion 

Correlations were run to determine if the physiological measures provided 

statistically significant and relevant information. Only the HR and Blink Rate provided 

significant data across all divergent participants. The direction of the HR correlations for 

the high workload participants were as expected, increasing with increased objective 

workload. However, they did not provide higher correlations than the low workload 

participants as was hypothesized.  While Blink Rate provided statistically significant 

correlations, none were in the hypothesized direction, decreasing with increased objective 

workload.  

One-sample t-tests were conducted to determine if the change from baseline HR 

measures were statistically different from the vanilla baselines, which would demonstrate 

that HR across all experimental trials were statistically higher than HR during the 
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baseline. This would suggest that the workload across all workload conditions actually 

affected the HR compared to the baseline since it was reliably above zero. The effect size 

was calculated which measured the percentage of the variability accounted for by the 

measure. P2 and P8 accounted for a higher percentage of variability than P9 and P11.  

While the t-test provided significant results, they were in the opposite direction 

than was hypothesized. Additionally,  the hypothesis that there would be a weak 

correlation between the objective workload (VACP) and physiological data when the 

perceived workload (NASA-TLX) is low and moderate to high correlation between the 

objective workload (VACP) when the perceived workload (NASA-TLX) is high was not 

fully supported. Further analysis specifically looking at the four types of task load 

conditions (1) No Fuzz, Low Distractors 2) Fuzz, Low Distractors 3) No Fuzz, High 

Distractors 4) Fuzz, High Distractors) should be explored further. 
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V.  Conclusions and Recommendations 

Introduction of Research 

Increased task load in AF missions manifests itself in increased workload and at 

times derogated performance. Analysis of subjective workload, as measured by 

NASA-TLX, and performance sought to classify individuals in one of four categories: 

low performance and low workload, high performance and low workload, low 

performance and high workload, and high performance and high workload. The objective 

workload as modeled by IMPRINT was analyzed to determine if persons exhibiting low 

performance and high workload, and therefore assumed to be operating above their 

red-line more often than not, exhibited certain characteristics or patterns that could be 

used to identify them as red-lined or not. Physiological measures were correlated for the 

identified participants in hopes of understanding if the physiology measures indicated 

greater changes in stress response across participants having generally high workload 

than generally low workload across the range of experimental conditions.  

Summary of Research Gap, Research Questions 

The design of systems employing adaptive automation requires a deeper 

understanding of means to determine the cognitive workload of an operator to permit 

maintenance of near ideal operator cognitive workload levels in systems that 

automatically adjust the level of automation.  Approaches to this problem include 

applying objective workload measures or human physiology measures to understand 

operator workload.   
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The current research compared physiologic responses and workload at low and at 

high, presumed red-line, workload during different task load conditions. This research 

was designed to test the underlying hypothesis that traditional physiologic responses, 

including heart rate and eye movements, likely represent psychological stress rather than 

perceived workload and therefore are likely to indicate changes in perceived workload 

near operator red-line than general workload. The investigative questions seek to provide 

insight by providing a process to investigate the relationship among subjective workload, 

objective workload, performance, and physiological measures.  It is believed that a 

deeper understanding of the relationship among these variables, will help system 

designers and operators to overcome the challenges presented in the design of systems 

employing adaptive automation.  This deeper understanding is explored by answering the 

three investigative questions of this thesis. 

 Question 1:  Are the participants’ individual data sets divergent from one another 

based upon perceived workload ratings (NASA-TLX) and performance?  

As hypothesized four divergent groups with individuals who fit in each quadrant 

based upon their perceived workload ratings from NASA-TLX and their performance 

were evident using the distance of participants’ centroid from the origin within the 

normalized two-dimensional response formed from their subjective workload score and 

performance across each task.  Statistically relevant differences were found through the 

MANOVA analysis supporting this hypothesis. Participant 11 represented a low 

performing individual with low perceived workload. Participant 9 represented a high 

performing individual with high perceived workload. Participant 8 represented a low 
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performing individual with high perceived workload. Lastly, participant 2 represented a 

high performing individual with high perceived workload. 

This finding is not surprising based upon the research of Hart and Staveland 

(1988, 2006).  Perhaps not surprising is the fact that it was most difficult to identify 

participants who were clearly in the high workload, high performance quadrant as it is 

expected that performance will be degraded at high workload levels (Wynn and 

Richardson 2008).  While participant 2 was identified as being indicative of this 

quadrant, the average workload for this participant was near the average workload for the 

sample of participants.  Participants 7 and 10 provided higher average workload values 

but their performance was not statistically higher than participant 8 who was clearly in 

the high workload, low performance quadrant within this analysis. 

Question 2:  Which measures are characteristic of red-lined individuals based on 

their objective workload profile as modeled in IMPRINT and how do these 

measures vary for the identified individuals throughout the tasks?  

It was hypothesized that there would be measures from the objective workload 

profiles, as modeled by IMPRINT, which would allow individuals to be identified as 

red-line or not. Extreme scenarios of participants were used to identify and explore trends 

in the objective workload (VACP) results to understand the differences in manageable 

workload conditions versus workload conditions that were deemed to be above a 

participant’s red-line.   

The measures which were characteristic of red-lined experimental conditions 

manifested themselves with the addition of the secondary task.  Specifically, the 
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participants were unable to complete a relatively intensive task (i.e., finding the target) 

before the secondary task was imposed. Other factors may have contributed to those 

participants’ who were unable to locate the HVT prior to the initiation of the secondary 

task such as the way they performed the task (i.e. search pattern, task shedding, etc.). 

However, additional data, such as videos collected for this experiment, would need to be 

explored. A deeper analysis based on participant and task load conditions specifically 

looking at all potential red-line scenarios could determine if the patterns were transferable 

or not.  

Question 3:  Do the physiological measures: blinks, saccades, HR, HRV, correlate 

with the objective workload profile for all divergent participants and conditions? 

It was hypothesized that there would be a weak correlation between the objective 

workload (VACP) and physiological data when the perceived workload (NASA-TLX) 

was low and moderate to high correlation between the objective workload (VACP) and 

the physiological data when the perceived workload (NASA-TLX) was high.  Similar 

relationships were also expected for participants having generally high or degraded 

performance. Overall, the correlations were very weak. In the high workload participants, 

P2, P8, P7, and P10, HR was positively correlated with VACP as hypothesized. 

However, the correlations were not stronger than those who reported low subjective 

workload, P9 and P11. Blink rate also provided statistically significant correlations, but 

blink rates increased with increases in objective workload which is in the opposite 

direction as hypothesized based on previous literature (Kramer 1990).  Given that there is 

limited research on the correlation of physiology and objective workload measures in the 
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literature, it is useful to additionally explore the correlation of the various physiology 

measures.  Very little variance in objective workload was explained by the physiological 

measures. This suggest that either the correlation of physiological measures and objective 

workload measures is very weak, that the experimental design was not correct for 

analyzing this relationship, or there was a mediating variable that would explain more of 

the relationship.  

One-sample t-tests determined the baseline HR and HRV were statistically 

different from the vanilla baseline of HR and HRV, but they were in the opposite 

direction than expected.  It was expected HR would be positively correlated and HRV 

would be negatively correlated. HR was actually slower in the surveillance scenarios than 

it was in the baseline condition opposite of what has been seen in past literature 

(Brookhuis and Waard 2010).  HRV actually increased from the baseline during the 

surveillance scenarios which is as expected since the HR decreased in the scenarios, but 

not in line with past research (Brookhuis and Waard 2010).This could be due to the short 

amount of time used to calculate the vanilla baseline, possibly due to the vanilla baselines 

being collapsed across the different days, or the fast-paced nature of the tracking task 

may have actually induced higher workload on the participant than the surveillance task.  

Statistically significant results were found, but the data does not fully support the 

hypothesis that those with perceived high workload would have a stronger correlation, 

than those with perceived low workload.  



 

86 

Study Limitations 

Each participant experienced four different task load conditions four different 

times.  The scenario orders differed for each participant as well as the HVT paths, 

making it difficult to draw conclusion of which factors caused the task load to be reported 

in the manner it was and the cause was not found. Participants’ were awarded points for 

tracking the HVT, once found, while arguably their highest amount of workload occurred 

searching for the HVT, a non-scoring period. Participants’ performances were largely a 

matter of chance based on if they instituted the correct searching mechanism for the 

specific HVT pattern, rather than a measure of reaction time. Scenarios were scored for a 

set period of time, while the physiological measures were collected for the duration of the 

trial, adding complexity when analyzing data.  

The complex experimental design provided challenges when interpreting the data 

and especially when trying to group participants to analyze the different task loads. There 

were a limited number of participants who completed the experiments. Additionally, the 

data were provided rather than collected in-house, which limited the breadth of 

understanding based on observations and personal anecdotal explanations which would 

have been experienced first-hand. The HUMAN lab instituted data collection procedures 

and stored the data for their own research efforts.  This resulted in limited flexibility with 

how the data were presented, categorized, and sampled during collection. In order to 

analyze the data across the proposed measures at one second intervals, interpolation was 

required. As with any post hoc analysis, the data analysis relied on existing data to 

answer a question beyond the scope of the original experimental design. This fact limited 
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the data analysis opportunities which will be explained further in the recommendations 

for future research.  

Recommendations for Future Research  

 In the future, the presented method should be applied to an experiment designed 

to have very clear task loads and fewer variables. The experimental design should be able 

to accurately detect any mediating variables.  Additionally, the experiment should 

measure performance based on a more concrete metric which would account for when 

workload would likely be higher based on task load. This process can and should be 

extended to other efforts collecting subjective workload and physiological measures as 

well as modeling objective workload to provide a broader body of knowledge to 

understand where and when a participant’s red-line occurs. Additionally, VACP should 

be adapted to accurately reflect the type of work and potential workload associated with 

tasks specific to computer interfaces and control stations. Understanding of the workload 

and physiological relationship is crucial in order to continue to improve system design by 

providing useful information of when operator workload is manageable or not. 

Significance of Research 

The primary focus of this thesis was to investigate individual differences between 

participants whose subjective workload ratings varied as well as their performance and 

relate them to objective workload and physiological measures. Overall, a process for 

analyzing this relationship was developed and illustrated on experimental data. The 

process provides insight into how mental workload effects physiological changes and 

how task performance, cognitive performance, workload stress, and physiological 
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measures relate. It is hoped that this method will provide a deeper understanding for how 

physiological measures relate to workload across the entire workload spectrum 

specifically investigating when a person is red-lined or not. Deepening this understanding 

has the potential to improve system design by providing useful information and data 

interpretation across the workload spectrum which operators experience based on 

different task loads, especially task loads at the extremes of operator performance which 

often result in operator performance degradation (Wickens 2008, Nachreiner 1995, Ng, 

Hubbard and O'Young 2010, Young and Stanton 2002).   
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